Cho ∆ABC vuông tại B, đường cao BH, biết AB = a, BC = a√3. Tính BH, AC, AH, HC theo a?
Giải chi tiết giúp mik nh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
a) Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
\(\Rightarrow HC^2=AC^2-AH^2\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{40^2-24^2}=32cm\)
b) Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt{9,6^2+12,8^2}=16cm\)
c) \(BC=CH+BH=72+12,5=84,5\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC=12,5.84,5=1056,25\\AC^2=CH.BC=72.84,5=6084\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{65}{2}\left(cm\right)\\AC=78\left(cm\right)\end{matrix}\right.\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{78.\dfrac{65}{2}}{84,5}=30\left(cm\right)\)
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Bài 1:
\(BC=CD+BD=68+51=119\)
\(AD\)là phân giác \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay \(\frac{51}{AB}=\frac{68}{AC}\)
\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)
suy ra: \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)
ÁP dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)
\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)
Bài 2:
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)
\(\Leftrightarrow\)\(BH=4,5\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)
b) \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)
\(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)
a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm
b, AH = 3 3 cm; P A B C = 18 + 6 3 c m ; P A B H = 9 + 3 3 c m ; P A C H = 9 + 9 3 c m
bạn thêm đk a > 0 nhé
Xét tam giác ABC vuông tại B
Theo định lí Pytago ta được
\(AC=\sqrt{AB^2+BC^2}=\sqrt{a^2+3a^2}=\left|2a\right|=2a\)
Áp dụng hệ thức \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{BC^2}=\dfrac{1}{a^2}+\dfrac{1}{3a^2}=\dfrac{4a^2}{3a^4}\Rightarrow BH=\dfrac{\sqrt{3}a^2}{2a}=\dfrac{\sqrt{3}a}{2}\)
Áp dụng hệ thức \(AB^2=AH.AC\Rightarrow AH=\dfrac{AB^2}{AC}=\dfrac{a^2}{2a}=\dfrac{a}{2}\)
HC = AC - AH = \(2a-\dfrac{a}{2}=\dfrac{3a}{2}\)