cho tam giác ABC bằng tam giác A'B'C', gọi M là trung điểm của BC, M' là trung điểm của B'C'. biết AM=A'M'. CMR:
a, tam giác AMB= tam giác A'M'B'
b,tam giác AMC= tam giác A'M'C'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
AB = A'B' => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)A'B' <=> MB = M'B'
Xét tg AMB và tg A'M'B' có:
+ MB = M'B' ( c/m trên )
+ AB = A'B' ( do tg ABC = tg A'B'C' )
+ góc B = góc B' ( do tg ABC = tg A'B'C' )
Suy ra: .....
b) Vì tg AMB = tg A'M'B' ( c/m a)) => góc AMB = góc A'M'B'
=> 180 độ - góc AMB = 180 độ - góc A'M'B'
<=> Góc AMC = góc A'M'C' => ĐPCM
k nha!
a) 2 tam giác = nhau theo trường hợp cạnh - cạnh - cạnh
b) Vì tam giác AMB= A'M'B' (c/m trên)
=> góc AMB= góc A'M'B'
=> góc AMC= góc A'M'C' ( cùng kề bù vs 2 góc = nhau của tam giác)
Tự hiểu nha bạn ^^
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
Hai tam giác đó vẽ như này? True or False?