K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

a) Ta có: \(\left(a+b\right)^2=a^2+2ab+b^2=a^2-2ab+b^2+4ab=\left(a-b\right)^2+4ab^{\left(đpcm\right)}\)

b)Từ kết quá câu a),ta suy ra: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=9^2-4.20=81-80=1\)

\(\Rightarrow a-b=1\Rightarrow\left(a-b\right)^{2015}=1^{2015}=1\)

Vậy \(\left(a-b\right)^{2015}=1\)

16 tháng 10 2018

(a+b)^2=(a-b)^2+4ab

(a+b)^2=a^2-2ab+b^2+4ab

(a+b)^2=a^2+2ab+b^2

(a+b)^2=(a+b)^2

b,(a+b)=81

suy ra (a+b)^2=81

(a-b)^2+4ab=81

(a-b)^2=81-4*20

(a-b)^2=81-80

(a-b)^2=1

suy ra (a-b)=1hoac (a-b)=-1

a<b suy ra a-b<0

suy ra a-b=-1

(a-b)^2015=(-1)^2015=-1

18 tháng 9 2016

Ta có:

a2017 + b2017 = a2017 + ab2016 + a2016b + b2017 - a2016b - ab2016

= a.(a2016 + b2016) + b.(b2016 + a2016) - ab.(a2015 - b2015)

= (a2016 + b2016).(a + b) - ab.(a2015 + b2015)

Chia cả 2 vế cho a2017 + b2017 = a2016 + b2016 = a2015 + b2015

=>  a + b - ab = 1

=> a.(1 - b) - 1 + b  = 0

=> a.(1 - b) - (1 - b) = 0

=> (1 - b).(a - 1) = 0

=> a = b = 1

Ta có: P = 20.a + 11.b + 2017

P = 20.1 + 11.b + 2017

P = 20 + 11 + 2017

P = 2048

 

8 tháng 8 2017

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

Ta lại có: 

\(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu = xảy ra khi \(a=b=c\)

Thế vào N ta được

\(N=\frac{a^{2015}+b^{2015}+c^{2015}}{\left(a+b+c\right)^{2015}}=\frac{3a^{2015}}{3^{2015}.a^{2015}}=\frac{1}{a^{2014}}\)