K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

A=2+22+23+24+....+230

=(2+22+23)+(24+25+26)+...+(228+229+230)

=1(2+22+23)+23(2+22+23)+...+227(2+22+23)

=1.7+23.7+25.7+...+227.7

=7(1+23+25+...+227)

vì 7:7-->A:7

6 tháng 1 2018

\(A=2+2^2+2^3+2^4+...+2^{29}+2^{30}\)

    \(=\left(2^{ }+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)

      \(=2.\left(1+2+2^2\right)+2^{^{ }4}.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)

      \(=2.7+2^4.7+...+2^{28}.7\)

      \(=7.\left(2+2^4+...+2^{28}\right)\)

       \(\Rightarrow A⋮7\)

         

31 tháng 1 2018

p là số ngyên tố lớn hơn 3=>p không chia hết cho 3

=>p2=3k+1

=>p2-1=3k+1-1=3k chia hết cho 3

=>đpcm

31 tháng 1 2018

Nếu p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3.

Vậy p = 3t + 1 và p = 3t + 2 (t là số tự nhiên)

Tuy nhiên p cũng không chia hết cho 2, nên nếu p = 3t + 1 thì t chẵn (t = 2k); p = 3t + 2 thì t lẻ (t = 2k + 1) (k là số tự nhiên). 

Vậy ta đặt  \(p=6k+1\)   hoặc \(p=6k+5\)  (k lẻ)

+) Với p = 6k + 1 thì \(p^2-1=\left(6k+1\right)^2-1=36k^2+12k=12k\left(3k+1\right)⋮3\)

+) Với p = 6k + 5 thì \(p^2-1=\left(6k+5\right)^2-1=36k^2+60k+24=12\left(3k^2+5k+2\right)⋮3\)

Vậy với p là số nguyên tố lớn hơn 3 thì p2 - 1 luôn chia hết 3.

16 tháng 6 2016

a ) Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

16 tháng 6 2016

p<p+4 nguyen to => p<p+4 dang 3k +1

=>p+8 dang 3k+9

3k chia het cho 3

9 chia het cho 3 

=> 3k +9 là hợp số =>p +8 là hợp số

21 tháng 2 2016

a-2:3 => a-2+3:3 =>a+1:3

a-4:4 => a-4+5:5 => a+1:5

a-6:7 => a-6+7:7 => a+1:7

Vậy a+1 là bọi của 3,5,7

a nhỏ nhất nên a+1 nhỏ nhất

a+1 là BCNN(3;5;7)=105

a=104

2) sooschia hết cho 4 phải có 2cs tận cùng chia hết cho 4

Ta có cd chia hết cho 4 nên abcd chia hết cho 4

Câu b tương tự

18 tháng 1 2016

trừ điểm Lê Nhật Minh đi 

1 tháng 9 2018

A=4a^2+8ab+4b^2 - 5ab-15b^2 = 4(a+b)^2 - 5b(a+3b) ta thấy -5b(a+3b) luôn là 1 số chia hết 5

Vậy A chia hết 5 thì (a+b) cũng chia hết 5 => B = a^4-b^4 = (a^2+b^2)(a+b)(a-b) cũng chia hết 5

5 tháng 4 2017

Ta có:10^28+8=100...008 (27 chữ số 0) 
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1) 
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2) 
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72 
Nếu chưa học thì giải zầy: 
10^28+8=2^28.5^28+8 
=2^3.2^25.5^28+8 
=8.2^25.5^28+8 chia hết cho 8 
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1 
=>10^28+8 chia hết cho 8.9=72 

5 tháng 4 2017

abcdeg = ab . 10000 + cd .100 + eg
= (ab . 9999 + cd . 99) +( ab + cd + eg) 
= 11. (ab . 909 + cd . 9) +( ab + cd + eg) 
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11 
mà theo bài ra ab + cd + eg
Chia hết cho 11 
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + eg) hay abcdeg

Vì 11\(⋮\)11

Vậy...

Vậy