Chứng minh rằng:
\(\dfrac{1}{3}\le\dfrac{x^2+x+1}{x^2-x+1}\le3\)
Giải chi tiết giúp mik ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\dfrac{31}{35}-\dfrac{4}{7}\right)\times\dfrac{8}{7}:2\\ =\left(\dfrac{31}{35}-\dfrac{4\times5}{35}\right)\times\dfrac{8}{7}:2\\ =\dfrac{11}{35}\times\dfrac{8}{7}:2\\ =\dfrac{88}{245}:2\\ =\dfrac{44}{245}\\ b,\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\\ =\left(\dfrac{2-1}{2}\right)\times\left(\dfrac{3-1}{3}\right)\times\left(\dfrac{4-1}{4}\right)\times\left(\dfrac{5-1}{5}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{4}\times\dfrac{4}{5}=\dfrac{1}{5}\)
a, ( \(\dfrac{31}{35}\) - \(\dfrac{4}{7}\)) \(\times\) \(\dfrac{8}{7}\): 2
= \(\left(\dfrac{31}{35}-\dfrac{20}{35}\right)\) \(\times\) \(\dfrac{8}{7}\) : 2
= \(\dfrac{11}{35}\) \(\times\) \(\dfrac{8}{7}\) \(\times\) \(\dfrac{1}{2}\)
= \(\dfrac{44}{35}\) \(\times\) \(\dfrac{4}{7}\)
= \(\dfrac{44}{245}\)
b, ( 1 - \(\dfrac{1}{2}\)) \(\times\) ( 1 - \(\dfrac{1}{3}\)) \(\times\) ( 1 - \(\dfrac{1}{4}\)) \(\times\) ( 1 - \(\dfrac{1}{5}\))
= \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2}{3}\) \(\times\) \(\dfrac{3}{4}\) \(\times\) \(\dfrac{4}{5}\)
= \(\dfrac{1}{5}\) \(\times\) \(\dfrac{2\times3\times4}{2\times3\times4}\)
= \(\dfrac{1}{5}\)
\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\left(ĐKXĐ:y\ne0\right)\)
\(\Rightarrow\dfrac{xy-27}{9y}=\dfrac{1}{18}\)
\(\Rightarrow18\left(xy-27\right)=9y\)
\(\Rightarrow2\left(xy-27\right)=y\)
\(\Rightarrow2xy-54=y\)
\(\Rightarrow2xy-y=54\Rightarrow y\left(2x-1\right)=54\)
\(\Rightarrow y=\dfrac{54}{2x-1}\)
- Suy ra 54 chia hết cho 2x - 1
\(\Rightarrow2x-1\inƯ\left(54\right)\)
\(\Rightarrow2x-1\in\left\{1;-1;2;-2;3;-3;9;-9;27;-27\right\}\)
Cho 2x - 1 bằng từng giá trị ở trên, ta tìm được :
\(x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};2;-1;5;-4;14;-13\right\}\). Mà x không có giá trị ngoài tập số nguyên.
\(\Rightarrow x\in\left\{-13;-4;-1;0;1;2;5;14\right\}\)
Thay các giá trị x trên vừa tìm được vào y :
\(\Rightarrow y\in\left\{54;-54;18;-18;6;-6;2;-2\right\}\)
Vậy : Các số x và y thỏa mãn đề bài là : \(\left(x;y\right)\in\left\{\left(1;54\right),\left(0;-54\right),\left(2;18\right),\left(-1;-18\right),\left(5;6\right),\left(-4;-6\right),\left(14;2\right),\left(-13;-2\right)\right\}\)
\(a,P=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)
\(b,P=\dfrac{1}{2}\Leftrightarrow4-10\sqrt{x}=\sqrt{x}+3\Leftrightarrow\sqrt{x}=\dfrac{7}{11}\Leftrightarrow x=\dfrac{49}{121}\left(tm\right)\)
\(c,P-\dfrac{2}{3}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{2}{3}=\dfrac{6-15\sqrt{x}-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)
Ta có \(3\left(\sqrt{x}+3\right)>0;-17\sqrt{x}\le0,\forall x\)
\(\Rightarrow P-\dfrac{2}{3}\le0\Leftrightarrow P\le\dfrac{2}{3}\left(đpcm\right)\)
\(\Leftrightarrow3x+6+x^2-3x+2=9\)
\(\Leftrightarrow x^2+8=9\)
hay \(x\in\left\{1;-1\right\}\)
ĐKXĐ:\(x\ne\pm2\)
\(\dfrac{3}{x-2}+\dfrac{x-1}{x+2}=\dfrac{9}{x^2-4}\\ \Leftrightarrow\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{9}{\left(x-2\right)\left(x+2\right)}=0\\ \Leftrightarrow\dfrac{3\left(x+2\right)+\left(x-1\right)\left(x-2\right)-9}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow3\left(x+2\right)+\left(x-1\right)\left(x-2\right)-9=0\\ \Leftrightarrow3x+6+x^2-x-2x+2-9=0\\ \Leftrightarrow x^2-1=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
`9/[x^2-4]=[x-1]/[x+2]+3/[x-2]` `ĐK: x \ne +-2`
`<=>9/[(x-2)(x+2)]=[(x-1)(x-2)+3(x+2)]/[(x-2)(x+2)]`
`=>9=x^2-2x-x+2+3x+6`
`<=>x^2=1`
`<=>x=+-1` (t/m)
Vậy `x=+-1`
\(\dfrac{9}{x^2-4}=\dfrac{x-1}{x+2}+\dfrac{3}{x-2}\left(đkxđ:x\ne\pm2\right)\\ \Leftrightarrow\dfrac{9}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\\ \Rightarrow9=x^2-3x+2+3x+6\\ \Leftrightarrow x^2=1\\ \Leftrightarrow x^2=\pm1\left(TM\right)\)
Vậy PT có tập nghiệm \(S=\left\{-1;1\right\}\)
a) \(2x-6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=\dfrac{6}{2}=3\)
b) \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
a: \(\Leftrightarrow x+2016=0\)
hay x=-2016
b: \(\Leftrightarrow x-100=0\)
hay x=100
\(\dfrac{x^2+x+1}{x^2-x+1}-\dfrac{1}{3}=\dfrac{3x^2+3x+3-x^2+x-1}{3\left(x^2-x+1\right)}\)
\(=\dfrac{2x^2+4x+2}{3\left(x^2-x+1\right)}=\dfrac{2\left(x+1\right)^2}{3\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge0\)
Do đó: \(\dfrac{1}{3}\le\dfrac{x^2+x+1}{x^2-x+1}\)(1)
\(\dfrac{x^2+x+1}{x^2-x+1}-3=\dfrac{x^2+x+1-3x^2+3x-3}{x^2-x+1}\)
\(=\dfrac{-2x^2+4x-2}{x^2-x+1}=\dfrac{-2\left(x-1\right)^2}{x^2-x+1}\le0\)
Do đó: \(\dfrac{x^2+x+1}{x^2-x+1}\le3\)(2)
Từ (1)và (2) suy ra ĐPCM