K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2022

chữ xấu (thông cảm) ;-;

undefined

8 tháng 2 2023

Ta có :

\(\dfrac{1}{1.3}\text{=}2\left(\dfrac{1}{1}-\dfrac{1}{3}\right)\)

\(\dfrac{1}{3.5}\text{=}2\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)

\(\dfrac{1}{5.7}\text{=}2\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\)

\(...\)

\(\dfrac{1}{2021.2023}\text{=}2\left(\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(\Rightarrow\) biểu thức chỉ còn :

\(2.1-\dfrac{2}{2023}\text{=}\dfrac{4044}{2023}\)

8 tháng 2 2023

đặt biểu thức trên là A

ta có

2A=2/1.3+2/3.5+...+2/2021.2023

2A=1/1-1/3+1/3-1/5+...+1/2021-1/2023

2A=1/1-1/2023

2A=2022/2023

A=(2022/2023):2

A=1011/2023

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+.....+\dfrac{1}{2021.2023}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{2021.2023}\right)\)

\(=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(=\dfrac{1}{2}.\left(1-\dfrac{1}{2023}\right)=\dfrac{1}{2}.\dfrac{2022}{2023}=\dfrac{1011}{2023}\)

 

12 tháng 3 2023

Ta có A = \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2021\cdot2023}\)

            = \(\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\right)\)

            = \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}+\dfrac{1}{2023}\right)\)

            = \(\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)=\dfrac{1}{2}\cdot\dfrac{2022}{2023}=\dfrac{1011}{2023}\)
 

13 tháng 5 2022

Đặt tông trên là A

\(\dfrac{2A}{7}=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2023-2021}{2021.2023}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}=1-\dfrac{1}{2023}=\dfrac{2022}{2023}\)

\(\Rightarrow A=\dfrac{7.2022}{2.2023}=\dfrac{1011}{289}\)

NV
11 tháng 3 2023

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\)

\(=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2023-2021}{2021.2023}\)

\(=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{2023}{2021.2023}-\dfrac{2021}{2021.2023}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(=1-\dfrac{1}{2023}=\dfrac{2022}{2023}\)

11 tháng 3 2023

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}...+\dfrac{2}{2021.2023}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(=1-\dfrac{1}{2023}\)

\(=\dfrac{2023}{2023}-\dfrac{1}{2023}\)

\(=\dfrac{2022}{2023}\)

19 tháng 3 2023

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(B=\dfrac{1}{1}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{1}{7}+...+\dfrac{1}{97}\cdot\dfrac{1}{99}\)

\(B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(B=\dfrac{1}{1}-\dfrac{1}{99}\)

\(B=\dfrac{99}{99}-\dfrac{1}{99}\)

\(B=\dfrac{98}{99}\)

#YVA

22 tháng 3 2023

B=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

B=\(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right):2\)

B=\(\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{97}-\dfrac{1}{99}\right):2\)

B=\(\left(\dfrac{1}{1}-\dfrac{1}{99}\right):2\)

B=\(\dfrac{98}{99}:2\)

B=\(\dfrac{49}{99}\)

NV
5 tháng 3 2023

\(2H=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{49.51}\)

\(2H=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{51-49}{49.51}\)

\(2H=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{51}{49.51}-\dfrac{49}{49.51}\)

\(2H=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(2H=1-\dfrac{1}{51}\)

\(2H=\dfrac{50}{51}\)

\(H=\dfrac{25}{51}\)

\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}-\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}\right)-\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{8}{9}-\dfrac{1}{2}\cdot\dfrac{2}{5}\)

\(=\dfrac{4}{9}-\dfrac{1}{5}\)

\(=\dfrac{11}{45}\)

24 tháng 5 2017

\(M=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{995.997}+\dfrac{1}{997.999}\)

\(2M=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{995.997}+\dfrac{2}{997.999}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{997}-\dfrac{1}{999}\)

\(=1-\dfrac{1}{999}=\dfrac{998}{999}\)

\(\Rightarrow M=\dfrac{998}{999}.\dfrac{1}{2}=\dfrac{499}{999}\)

\(M=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{995.997}+\dfrac{1}{997.999}\\ =\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{995.997}+\dfrac{2}{997.999}\right)\\ =\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{997}-\dfrac{1}{999}\right)\\ =\dfrac{1}{2}.\left(1-\dfrac{1}{999}\right)=\dfrac{1}{2}.\dfrac{998}{999}=\dfrac{499}{999}\)

13 tháng 2 2022

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\left(\dfrac{100}{101}\right)=\dfrac{50}{101}\)

\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}\)