K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\left(\dfrac{100}{101}\right)=\dfrac{50}{101}\)

\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}\)

8 tháng 10 2021

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}.\dfrac{100}{101}=\dfrac{50}{101}\)

23 tháng 5 2017

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)

\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)

23 tháng 5 2017

\(a,\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

6 tháng 5 2018

A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)

=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)

=2.(1-1/101)

=2.(101/101-1/101)

=2.100/101

200/101

6 tháng 5 2018

B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)

=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)

=2.(1/1+1/101)

=2.(101/101+1/101)

=2.102/101

=204/101

3 tháng 3 2017

2/ = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +......+\(\dfrac{1}{100.101}\)

= 1-\(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)+.........+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)

=1-\(\dfrac{1}{101}\)=...........

mk làm vậy thôi nha

thông cảm

leuleuyeu

2 tháng 3 2017

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{4.5}\)=\(1-\dfrac{1}{2}+....+\dfrac{1}{4}-\dfrac{1}{5}\)

=1-\(\dfrac{1}{5}=\dfrac{4}{5}\)

tương tự

9 tháng 5 2022

`A=2/[1.3]+2/[3.5]+2/[5.7]+.....+2/[99.101]`

`A=1-1/3+1/3-1/5+1/5-1/7+......+1/99-1/101`

`A=1-1/101=101-1/101=100/101`

9 tháng 5 2022

\(\dfrac{100}{101}\)

30 tháng 6 2017

\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(A=\dfrac{1}{2}.\left(\dfrac{100}{101}\right)-\dfrac{1}{101}\)

\(A=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)

30 tháng 6 2017

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}-\dfrac{1}{101}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)-\dfrac{1}{101}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(=\dfrac{1}{2}.\dfrac{100}{101}-\dfrac{1}{101}=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)

Vậy...

11 tháng 3 2023

\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\\ B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\\ B=\dfrac{1}{1}-\dfrac{1}{101}\\ B=\dfrac{101}{101}-\dfrac{1}{101}\\ B=\dfrac{100}{101}\)

11 tháng 3 2023

\(\dfrac{2}{1\cdot3}=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}\)

\(\dfrac{2}{3\cdot5}=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{15}-\dfrac{3}{15}=\dfrac{2}{15}\)

\(\dfrac{2}{5\cdot7}=\dfrac{1}{5}-\dfrac{1}{7}=\dfrac{7}{35}-\dfrac{5}{35}=\dfrac{2}{35}\)

và cứ như thế đến số cuối

 

3 tháng 3 2023

\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\\ =\dfrac{4}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =2.\left(1-\dfrac{1}{101}\right)\\ =2.\dfrac{100}{101}\\ =\dfrac{200}{101}\)

3 tháng 3 2023

`4/1.3+4/3.5+4/5.7+...+4/99.101`

`=2(2/1.3+2/3.5+2/5.7+...+2/99.101)`

`=2(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)`

`=2(1-1/101)`

`=2. 100/101`

`=200/101`