1: Cho y là các số dương, chứng tỏ rằng yx+xy≥2
2: cho hình thoi ABCD cạnh a. một đường thẳng đi qua C cắt các tia đối của các tia BA và DA theo thứ tự ở I và Q. Chứng minh 1/AI+1/AQ=1/a
3: Cho tam giác ABC vuông cân tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. Chứng minh AD = AE
1. \(y>0\)
Áp dụng BĐT AM-GM cho 2 số dương ta có:
\(y+\dfrac{1}{y}\ge2\sqrt{y.\dfrac{1}{y}}=2\left(đpcm\right)\)
2. ABCD là hình thoi \(\Rightarrow\)AC là phân giác \(\widehat{IAQ}\).
△IAQ có: AC là phân giác \(\Rightarrow\dfrac{AI}{AQ}=\dfrac{IC}{CQ}\Rightarrow\dfrac{AI+AQ}{AQ}=\dfrac{IQ}{CQ}\).
△IAQ có: BC//AQ \(\Rightarrow\dfrac{AI}{AB}=\dfrac{AI}{a}=\dfrac{IQ}{CQ}\Rightarrow\dfrac{AI}{a}=\dfrac{AI+AQ}{AQ}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{AI+AQ}{AI.AQ}=\dfrac{1}{AI}+\dfrac{1}{AQ}\)