K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2022

1. \(y>0\)

Áp dụng BĐT AM-GM cho 2 số dương ta có:

\(y+\dfrac{1}{y}\ge2\sqrt{y.\dfrac{1}{y}}=2\left(đpcm\right)\)

19 tháng 5 2022

2. ABCD là hình thoi \(\Rightarrow\)AC là phân giác \(\widehat{IAQ}\).

△IAQ có: AC là phân giác \(\Rightarrow\dfrac{AI}{AQ}=\dfrac{IC}{CQ}\Rightarrow\dfrac{AI+AQ}{AQ}=\dfrac{IQ}{CQ}\).

△IAQ có: BC//AQ \(\Rightarrow\dfrac{AI}{AB}=\dfrac{AI}{a}=\dfrac{IQ}{CQ}\Rightarrow\dfrac{AI}{a}=\dfrac{AI+AQ}{AQ}\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{AI+AQ}{AI.AQ}=\dfrac{1}{AI}+\dfrac{1}{AQ}\)

28 tháng 3 2020

con điên

28 tháng 3 2020

1, Có BC//AD (tính chất hình thoi)

Nên \(\widehat{MBC}=\widehat{A}=\widehat{CDN}\)(cách cặp góc đồng vị)

\(\widehat{BCM}=\widehat{DNC}\)(góc đồng vị)

=> \(\Delta\)MBC đồng dạng với \(\Delta\)CDN (g-g)

=> \(\frac{BM}{DC}=\frac{BC}{DN}\)

=> BM.ND=BC.DC=a2(không đổi)

b) \(\Delta\)BCD đều (Do BC=CD và \(\widehat{C}=60^o\)) nên BD=DC=BC

Ta có: \(\frac{BM}{DC}=\frac{BC}{DN}\left(a\right)\Rightarrow\frac{BM}{BD}=\frac{DB}{DN}\)

Lại có: \(\widehat{MBD}=\widehat{BDN}=120^o\)(kề bù với các góc của tam giác đều  ABD)

=> \(\Delta BMD=\Delta DBN\left(c.g.c\right)\)

\(\Rightarrow\widehat{AMD}=\widehat{DBN}\)(2 góc tương ứng)

Xét tam giác BKD và tam giác MBD có: \(\widehat{AMD}=\widehat{DBN}\left(cmt\right)\)\(\widehat{BDM}\)chung

=> Tam giác BKD đồng dạng với tam giác MBD (g-g)

\(\Rightarrow\widehat{BKD}=\widehat{MBD}=120^o\)

a: Vì BC//AD nên EB/BA=CE/CF

Vì DC//AB nên AD/DF=EC/FC

=>EB/BA=AD/DF

b: Vì ABCD là hình thoi và góc A=60 độ

nên AB=BC=CD=AD=AC

Xét ΔEBD và ΔBDF có

góc EBD=góc BDF

EB/BD=BD/DF

=>ΔEBD đồng dạng với ΔBDF

c: ΔEBD đồng dạng với ΔBDF

=>góc BED=góc DBF

=>ΔBDI đồng dạng với ΔEDB

=>góc BID=góc EBD=120 độ

19 tháng 3 2023

mik cảm ơn bạn nhiều

29 tháng 11 2017

10 tháng 1 2022

Xét Δ DAE và Δ BAC có:
AD = AB (gt)
DAE = BAC (đối đỉnh)
AE = AC (gt)
Do đó, Δ DAE = Δ BAC (c.g.c)
=> DEA = BCA (2 góc tương ứng)
Mà DEA và BCA là 2 góc so le trong nên DE // BC (đpcm)
Vì DE // BC nên MDA = ABN (so le trong)
Xét Δ DAM và Δ BAN có:
MDA = ABN (cmt)
AD = AB (gt)
DAM = BAN (đối đỉnh)
Do đó, Δ DAM = Δ BAN (g.c.g)
=> AM = AN (2 cạnh tương ứng) (đpcm)

 

10 tháng 1 2022

undefined