K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Bài 1:
Giả sử người thứ I làm riêng thì sau $a$ giờ thì xong. Khi đó người thứ II làm riêng sau $a+6$ giờ thì xong

Trong 1 giờ:

Người I làm $\frac{1}{a}$ công việc

Người II làm $\frac{1}{a+6}$ công việc

Trong 4 giờ, hai người làm:

$\frac{4}{a}+\frac{4}{a+6}=1$ (công việc)

Với $a>0$ ta dễ dàng tìm được $a=6$ (giờ)

Vậy người I làm riêng mất $6$ giờ, người II làm riêng mất $12$ giờ.

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Bài 2:

Thể tích bồn nước là:

$V=S_{đáy}. h=0,42.1,65=0,693(m^3)$ 

Vậy bồn nước này đựng đầy $0,693$ mét khối nước.

Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(h)

Thời gian người thứ hai hoàn thành công việc khi làm một mình là y(h)

Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai người làm được: \(\dfrac{1}{4}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\)(1)

Vì nếu làm 1 mình thì người thứ nhất làm xong việc nhanh gấp đôi người thứ hai nên ta có phương trình: y=2x(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\2x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{2x}=\dfrac{1}{4}\\y=2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2+1}{2x}=\dfrac{1}{4}\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=12\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=12\end{matrix}\right.\)

NV
19 tháng 3 2023

Gọi thời gian làm riêng hoàn thành công việc của người thứ nhất là x (ngày) với x>0

Thời gian làm riêng hoàn thành của hai là y ngày (y>0)

Do người 2 làm ít hơn người 1 là 6 ngày nên: \(x-y=6\)

Trong 1 ngày người thứ nhất làm được \(\dfrac{1}{x}\) phần công việc

Trong 1 ngày người thứ hai làm được \(\dfrac{1}{y}\) phần công việc

Do 2 người làm chung trong 4 ngày xong việc nên: \(4\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)

Ta có hệ: \(\left\{{}\begin{matrix}x-y=6\\\dfrac{4}{x}+\dfrac{4}{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+6\\\dfrac{4}{y+6}+\dfrac{4}{y}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y+6\\4y+4\left(y+6\right)=y\left(y+6\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+6\\y^2-2y-24=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=12\\y=6\end{matrix}\right.\)

13 tháng 4 2017

*xong rồi =)))))

13 tháng 4 2017

Gọi x là số ngày của người 1 làm 1 mình xong việc

      y là số ngày của người 2 làm 1 mình xong việc

ĐK: x;y > 0

Số việc người 1 làm trong 1h là \(\frac{1}{x}\)

Số việc người 2 làm trong 1h là \(\frac{1}{y}\)

Theo đề bài ta có hệ phương trình:

\(\hept{\begin{cases}4\left(\frac{1}{x}+\frac{1}{y}\right)=1\\10.\frac{1}{x}+\frac{1}{y}=1\end{cases}}\)

Từ đó bạn giải hệ và kết luận.

13 tháng 4 2017

Làm lại qua đây vậy:

Gọi số ngày người thứ nhất làm một mình xong việc là x

      số ngày người thứ hai làm một mình xong việc là y

ĐK: x;y > 0

Số việc người thứ nhất làm trong 1h là: \(\frac{1}{x}\)

Số việc người thứ hai làm trong 1h là: \(\frac{1}{y}\)

Theo đề bài ta có hệ phương trình:

\(\hept{\begin{cases}4\left(\frac{1}{x}+\frac{1}{y}\right)=1\\10.\frac{1}{x}+\frac{1}{y}=1\end{cases}}\)

Từ đây bạn giải tiếp & kết luận. Không hiểu hỏi nha hiccc

13 tháng 4 2021

Gọi thời gian người thứ nhất, người thứ 2 làm công việc đó lần lượt là \(x;y>0\), giờ 

Người thứ nhất làm xong ít hơn người thứ 2 là 6 giờ 

\(y-x=6\Rightarrow y=x+6\)giờ 

Trong 1 giờ đội thứ nhất làm được : \(\dfrac{1}{x}\)công việc 

Trong 1 giờ đội thứ 2 làm được : \(\dfrac{1}{y}=\dfrac{1}{x+6}\)công việc 

Do 2 người cùng làm 1 công việc thì 4 giờ xong 

hay ta có phương trình \(\dfrac{1}{x}+\dfrac{1}{x+6}=\dfrac{1}{4}\Leftrightarrow\dfrac{x+6+x}{x\left(x+6\right)}=\dfrac{1}{4}\)( ĐK : \(x\ne-6;0\))

\(\Rightarrow8x+24=x\left(x+6\right)\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\Leftrightarrow x=6\left(chon\right);x=-4\left(loai\right)\)

\(\Rightarrow y=6+6=12\)

Vậy người thứ nhất làm riêng công việc đó trong 6 giờ 

người thứ 2 làm riêng công việc đó trong 12 giờ 

 

Gọi thời gian hoàn thành công việc khi làm một mình của người 1 và người 2 lần lượt là a,b

Trong 1h,người 1 làm được 1/a(công việc)

Trong 1h, người 2 làm được 1/b(công việc)

Theo đề, ta có:

1/a+1/b=1/(5+5/6) và 5/a+7/b=1

=>1/a+1/b=6/35 và 5/a+7/b=1

=>a=10 và b=14

24 tháng 2 2019

Gọi x,y(h) lần lượt thời gian làm riêng xong cv của người 1 và 2(x,y>0)

Trong 1h người 1 làm được 1/x công việc

Trong 1h người 2 làm được 1/y công việc 

Trong 1h 2 người làm chung được 1/16 công việc 

Ta có pt1:  1/x   +   1/y  =   1/16

Trong 3h người 1 làm được 3/x công việc

Trong 6h người 2 làm được 6/y công việc

Ta có pt2:   3/x    +     6/y      =1/4

DONE

Hệ bạn tự giải nha

27 tháng 1 2022

Gọi thời gian làm xong việc một mình của người thứ nhất và người thứ hai lần lượt là \(x,y\left(x,y>0\right)\)(đơn vị: h)

Trong 1 giờ, người thứ nhất làm xong \(\frac{1}{x}\)công việc còn người thứ hai làm xong \(\frac{1}{y}\)công việc.

2 người cùng làm trong 12 giờ thì xong công việc nên ta có phương trình \(\frac{12}{x}+\frac{12}{y}=1\)(1)

Trong 8 giờ, 2 người hoàn thành \(\frac{8}{x}+\frac{8}{y}\)công việc, sau đó người thứ 2 làm việc một mình trong 6h40p \(=\frac{20}{3}\)h, tức là hoàn thành thêm \(\frac{20}{3y}\) công việc thì xong công việc nên ta có pt \(\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\)(2)

Từ (1) và (2) ta có hpt \(\hept{\begin{cases}\frac{12}{x}+\frac{12}{y}=1\\\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x}=a\left(a>0\right)\\\frac{1}{y}=b\left(b>0\right)\end{cases}}\), hpt trên trở thành \(\hept{\begin{cases}12a+12b=1\\8a+8b+\frac{20}{3}b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}24a+24b=2\\24a+24b+20b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}12a+12b=1\\20b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}12a+12.\frac{1}{20}=1\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{30}\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{30}\\\frac{1}{y}=\frac{1}{20}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=30\\y=20\end{cases}}\)(nhận)

Vậy người thứ nhất làm một mình xong công việc mất 30h, người thứ hai làm xong công việc một mình mất 20h

14 tháng 2 2020

khos thế

14 tháng 2 2020

Pt 1: 4(1/a  + 1/b )= 1

Pt 2: 1/a  +   3/b  = 5/12   

Từ 2 pt ta được hpt sau đó giải a,b với a là t/g người t1 làm cv đó, b là t/g người t2 làm cv đó