Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian người thứ nhất, người thứ 2 làm công việc đó lần lượt là \(x;y>0\), giờ
Người thứ nhất làm xong ít hơn người thứ 2 là 6 giờ
\(y-x=6\Rightarrow y=x+6\)giờ
Trong 1 giờ đội thứ nhất làm được : \(\dfrac{1}{x}\)công việc
Trong 1 giờ đội thứ 2 làm được : \(\dfrac{1}{y}=\dfrac{1}{x+6}\)công việc
Do 2 người cùng làm 1 công việc thì 4 giờ xong
hay ta có phương trình \(\dfrac{1}{x}+\dfrac{1}{x+6}=\dfrac{1}{4}\Leftrightarrow\dfrac{x+6+x}{x\left(x+6\right)}=\dfrac{1}{4}\)( ĐK : \(x\ne-6;0\))
\(\Rightarrow8x+24=x\left(x+6\right)\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\Leftrightarrow x=6\left(chon\right);x=-4\left(loai\right)\)
\(\Rightarrow y=6+6=12\)
Vậy người thứ nhất làm riêng công việc đó trong 6 giờ
người thứ 2 làm riêng công việc đó trong 12 giờ
Gọi x,y(h) lần lượt thời gian làm riêng xong cv của người 1 và 2(x,y>0)
Trong 1h người 1 làm được 1/x công việc
Trong 1h người 2 làm được 1/y công việc
Trong 1h 2 người làm chung được 1/16 công việc
Ta có pt1: 1/x + 1/y = 1/16
Trong 3h người 1 làm được 3/x công việc
Trong 6h người 2 làm được 6/y công việc
Ta có pt2: 3/x + 6/y =1/4
DONE
Hệ bạn tự giải nha
Gọi thời gian làm riêng hoàn thành công việc của người thứ nhất là x (ngày) với x>0
Thời gian làm riêng hoàn thành của hai là y ngày (y>0)
Do người 2 làm ít hơn người 1 là 6 ngày nên: \(x-y=6\)
Trong 1 ngày người thứ nhất làm được \(\dfrac{1}{x}\) phần công việc
Trong 1 ngày người thứ hai làm được \(\dfrac{1}{y}\) phần công việc
Do 2 người làm chung trong 4 ngày xong việc nên: \(4\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)
Ta có hệ: \(\left\{{}\begin{matrix}x-y=6\\\dfrac{4}{x}+\dfrac{4}{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+6\\\dfrac{4}{y+6}+\dfrac{4}{y}=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y+6\\4y+4\left(y+6\right)=y\left(y+6\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+6\\y^2-2y-24=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=12\\y=6\end{matrix}\right.\)
Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(h)
Thời gian người thứ hai hoàn thành công việc khi làm một mình là y(h)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được: \(\dfrac{1}{4}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\)(1)
Vì nếu làm 1 mình thì người thứ nhất làm xong việc nhanh gấp đôi người thứ hai nên ta có phương trình: y=2x(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\2x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{2x}=\dfrac{1}{4}\\y=2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2+1}{2x}=\dfrac{1}{4}\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=12\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=12\end{matrix}\right.\)
Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )
Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)
Gọi thời gian làm xong việc một mình của người thứ nhất và người thứ hai lần lượt là \(x,y\left(x,y>0\right)\)(đơn vị: h)
Trong 1 giờ, người thứ nhất làm xong \(\frac{1}{x}\)công việc còn người thứ hai làm xong \(\frac{1}{y}\)công việc.
2 người cùng làm trong 12 giờ thì xong công việc nên ta có phương trình \(\frac{12}{x}+\frac{12}{y}=1\)(1)
Trong 8 giờ, 2 người hoàn thành \(\frac{8}{x}+\frac{8}{y}\)công việc, sau đó người thứ 2 làm việc một mình trong 6h40p \(=\frac{20}{3}\)h, tức là hoàn thành thêm \(\frac{20}{3y}\) công việc thì xong công việc nên ta có pt \(\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\)(2)
Từ (1) và (2) ta có hpt \(\hept{\begin{cases}\frac{12}{x}+\frac{12}{y}=1\\\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x}=a\left(a>0\right)\\\frac{1}{y}=b\left(b>0\right)\end{cases}}\), hpt trên trở thành \(\hept{\begin{cases}12a+12b=1\\8a+8b+\frac{20}{3}b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}24a+24b=2\\24a+24b+20b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}12a+12b=1\\20b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}12a+12.\frac{1}{20}=1\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{30}\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{30}\\\frac{1}{y}=\frac{1}{20}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=30\\y=20\end{cases}}\)(nhận)
Vậy người thứ nhất làm một mình xong công việc mất 30h, người thứ hai làm xong công việc một mình mất 20h
Pt 1: 4(1/a + 1/b )= 1
Pt 2: 1/a + 3/b = 5/12
Từ 2 pt ta được hpt sau đó giải a,b với a là t/g người t1 làm cv đó, b là t/g người t2 làm cv đó
biên luân ban tu lm nhe mk chi ghi hê pt ra thôi \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{2}\end{cases}}\) ban tu giai nhe
Bài 1:
Giả sử người thứ I làm riêng thì sau $a$ giờ thì xong. Khi đó người thứ II làm riêng sau $a+6$ giờ thì xong
Trong 1 giờ:
Người I làm $\frac{1}{a}$ công việc
Người II làm $\frac{1}{a+6}$ công việc
Trong 4 giờ, hai người làm:
$\frac{4}{a}+\frac{4}{a+6}=1$ (công việc)
Với $a>0$ ta dễ dàng tìm được $a=6$ (giờ)
Vậy người I làm riêng mất $6$ giờ, người II làm riêng mất $12$ giờ.
Bài 2:
Thể tích bồn nước là:
$V=S_{đáy}. h=0,42.1,65=0,693(m^3)$
Vậy bồn nước này đựng đầy $0,693$ mét khối nước.