so sánh B=1/5+1/6+1/7+...+1/17 với 1
giúp mik vs nhé . Cảm ơn các bạn nhìu :)))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, \(A=x\left(x-6\right)+10\)
=x^2 - 6x + 10
=x^2 - 2.3x+9+1
=(x-3)^2 +1 >0 Với mọi x dương
Ta có :
\(\frac{1}{12}=\frac{1}{12}\)
\(\frac{1}{13}< \frac{1}{12}\)
\(\frac{1}{14}< \frac{1}{12}\)
\(........\)
\(\frac{1}{17}< \frac{1}{12}\)
Cộng vế với vế ta có :
\(\frac{1}{12}+\frac{1}{13}+....+\frac{1}{17}< \frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\)(có 6 số \(\frac{1}{12}\))\(=\frac{6}{12}=\frac{1}{2}\)
Vậy \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{17}< \frac{1}{2}\)
6/7 và 3
\(\frac{6}{7}< 1\)
\(3>1\)
Vậy : \(\frac{6}{7}< 3\)
3/5 và 6/4
\(\frac{6}{4}=\frac{3}{2}\)
Vậy : \(\frac{3}{5}< \frac{6}{4}\)
_HT_
Với n bằng 0 suy ra 2n+1 bằng 3n+1
Với n > 0 suy ra 2n+1 < 3n+1.
Ta có:
\(\dfrac{1}{5}>\dfrac{1}{10}\\ \dfrac{1}{6}>\dfrac{1}{10}\\ ...\\ \dfrac{1}{9}>\dfrac{1}{10}\\ \Rightarrow\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}>\dfrac{5}{10}=\dfrac{1}{2}.\)
Tương tự:
\(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{14}>\dfrac{5}{15}=\dfrac{1}{3}.\\ \dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}>\dfrac{3}{18}=\dfrac{1}{6}.\)
Cộng vế theo vế ta được \(B>\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}=1\left(đpcm\right)\)