Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A=1718+11719+1
⇒17A=1719+1+161719+1
⇒17A=1+161719+1
B=1717+11718+1
⇒17B=1718+1+161718+1
⇒17B=1+161718+1
Vì 161719+1<161718+1⇒17A<17B
⇒A<B
Vậy A<B
k cho mk nha
Sửa đề: \(C=\dfrac{17^{99}+1}{17^{99}-1}\)
\(C=\dfrac{17^{99}-1+2}{17^{99}-1}=1+\dfrac{2}{17^{99}-1}\)
\(D=\dfrac{17^{98}-1+2}{17^{98}-1}=1+\dfrac{2}{17^{98}-1}\)
17^99>17^98
=>17^99-1>17^98-1
=>C<D
Mình biết cách làm nhưng ngại viết lắm. Mình cho bạn cách làm nha. Bạn nhân cả x và y với 17 rồi so sánh 17x với 17y, 17x>17y thì x>y, 17y>17x thì y>x. Bài này kết quả là y<x
bạn cùng nhân với 17 vào cả hai vế và sau đó so sánh phần thừa
sau đó ta sẽ được y<x
a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà 17^19+1>17^18+1
nên A<B
b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)
\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)
2^2021-1<2^2022-1
=>1/2^2021-1>1/2^2022-1
=>-1/2^2021-1<-1/2^2022-1
=>C<D
Bài 1:
1: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà \(17^{19}+1>17^{18}+1\)
nên 17A>17B
hay A>B
2: \(C=\dfrac{98^{99}+98^{10}+1-98^{10}}{98^{89}+1}=98^{10}+\dfrac{1-98^{10}}{98^{89}+1}\)
\(D=\dfrac{98^{98}+98^{10}+1-98^{10}}{98^{88}+1}=98^{10}+\dfrac{1-98^{10}}{98^{88}+1}\)
mà \(98^{89}+1>98^{88}+1\)
nên C>D
\(A=\frac{17^{18}+1}{17^{19}+1}\)
\(17A=\frac{17^{19}+17}{17^{19}+1}=\frac{\left(17^{19}+1\right)+16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(17B=\frac{17^{18}+17}{17^{18}+1}=\frac{\left(17^{18}+1\right)+16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
\(\text{Vì}\)\(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)
\(\Leftrightarrow17A< 17B\)
\(\Leftrightarrow A< B\)
Trả lời
\(17A=\frac{\left(17^{18}+1\right)17}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
\(17B=\frac{\left(17^{17}+1\right)17}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
Vì \(17^{19}+1>17^{18}+1\)
\(\Rightarrow\frac{16}{17^{18}+1}>\frac{16}{17^{19}+1}\)
\(\Rightarrow1+\frac{16}{17^{18}+1}>1+\frac{16}{17^{19}+1}\)
\(\Rightarrow B>A\)
Ta có :
\(\frac{1}{12}=\frac{1}{12}\)
\(\frac{1}{13}< \frac{1}{12}\)
\(\frac{1}{14}< \frac{1}{12}\)
\(........\)
\(\frac{1}{17}< \frac{1}{12}\)
Cộng vế với vế ta có :
\(\frac{1}{12}+\frac{1}{13}+....+\frac{1}{17}< \frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\)(có 6 số \(\frac{1}{12}\))\(=\frac{6}{12}=\frac{1}{2}\)
Vậy \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{17}< \frac{1}{2}\)