Từ điểm K ở ngoài đường tròn (O), vẽ các tiếp tuyến KA và KB đến (O) với A và B là các tiếp điểm và cát tuyến KCD không đi qua tâm (C nằm giữa K và D). Vẽ OM L CD (M thuộc CD)
a) Chứng minh tứ giác KAOB nội tiếp và 5 điểm K, A, O, M, B cùng thuộc một đường tròn.
b) Chứng minh KA=KC.KD.
c) Đường thẳng qua C vuông góc với OB cắt AB tại E. Gọi G là giao điểm của DE và KB. Chứng minh tứ giác ACEM nội tiếp và G là trung điểm của KB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OHK+góc OBK=180 độ
=>OHKB nội tiếp
b: góc AHK=góc AOK
góc BHK=góc BOK
mà góc AOK=góc BOK
nên góc AHK=góc BHK
=>HK là phân giác của góc AHB
a) Ta có
OA vg góc vs MA (gt) => góc MAO = 90 độ
OB vg góc vs MB (gt) => góc MBO = 90 độ
Tứ giác MAOB có góc MAO + góc MBO = 90 + 90 = 180 độ
=> MAOB nội tiếp
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC=OM^2-R^2
b: Xét (O) co
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2=MC*MD
=>MH/MD=MC/MO
=>ΔMHC đồng dạng vơi ΔMDO
=>góc MHC=góc MDO
=>góc ODC+góc OHC=180 độ
=>OHCD nội tiếp
a: Xét tứ giác KAOB có
\(\widehat{KAO}+\widehat{KBO}=180^0\)
nên KAOB là tứ giác nội tiếp(1)
Xét tứ giác OMKB có \(\widehat{OMK}+\widehat{OBK}=180^0\)
nên OMKB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra O,M,A,K,B cùng thuộc đường tròn
b: Xét ΔKAC và ΔKDA có
\(\widehat{KAC}=\widehat{KDA}\)
góc AKC chung
Do đó: ΔKAC\(\sim\)ΔKDA
Suy ra: KA/KD=KC/KA
hay \(KA^2=KC\cdot KD\)