Mong các bạn giúp mình
CMR : a, 10^n + 5^3 chia hết cho 9
b, 43^43 - 17^17 chia hết cho 10
Mình đang rất cần mong các bạn giúp đỡ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(10^n=100.....000\) (\(n\) chữ số \(0\)) có tổng các chữ số là \(1\)
Lại có : \(5^3=125\) có tổng các chữ số là \(8\)
\(\Rightarrow10^n+5^3\) có tổng các chữ số là \(9\)
\(\Rightarrow10^n+5⋮9\rightarrowđpcm\)
~ Chúc bn học tốt ~
b) Số có tận cùng là \(3\) khi nâng lên lũy thừa mũ \(4n\) sẽ có tận cùng là chữ số \(1\)
Do đó : \(43^{43}=43^{4.10+3}=43^{4.10}+43^3=\left(......1\right)\left(...7\right)=\left(...7\right)\)
Số có tận cùng là \(7\) khi nâng lên lũy thừa mũ \(4n\) sẽ có tận cùng là \(1\)
Do đó : \(17^{17}=17^{4.4+1}=17^{4.4}+17^1=\left(...1\right)\left(....7\right)=\left(...7\right)\)
\(\Rightarrow43^{43}-17^{17}=\left(....7\right)-\left(...1\right)=\left(...0\right)\)
\(\Rightarrow43^{43}-17^{17}⋮10\rightarrowđpcm\)
~ Học tốt ~
a) Ta có 53 = 125. Nếu n>3 thì 10n + 125 = 100..0125 có tổng các chữ số là 1 + 1 + 2 + 5 = 9 chia hết cho 9. Vậy số 10n + 125 chia hết cho 9.
Xét trường hợp đặc biệt, n = 0; n = 1; n = 2 thì 10n + 125 bằng 126; 136; 225 đều là các số chia hết cho 9.
Vậy với mọi số tự nhiên n, 10n + 125 chia hết cho 9
b) Ta có 431 = 43; 432 = ..9 (tận cùng là 9); 433 = ..7; 434 = ...1; 435 = ...3 =>
434k+1 = ...3; 434k+2 = ...9; 434k+3 = ...7; 434k = ...1;
Mà 43 = 4.10 + 3 => 4343 = 434.10+3 = ...7 (tận cùng là 7)
Tương tự ta có 1717 cũng có tận cùng là 7
Suy ra 4343 - 1717 tận cùng là 0, chia hết cho 10
a) Ta có 53 = 125. Nếu n>3 thì 10n + 125 = 100..0125 có tổng các chữ số là 1 + 1 + 2 + 5 = 9 chia hết cho 9. Vậy số 10n + 125 chia hết cho 9.
Xét trường hợp đặc biệt, n = 0; n = 1; n = 2 thì 10n + 125 bằng 126; 136; 225 đều là các số chia hết cho 9.
Vậy với mọi số tự nhiên n, 10n + 125 chia hết cho 9
b) Ta có 431 = 43; 432 = ..9 (tận cùng là 9); 433 = ..7; 434 = ...1; 435 = ...3 =>
434k+1 = ...3; 434k+2 = ...9; 434k+3 = ...7; 434k = ...1;
Mà 43 = 4.10 + 3 => 4343 = 434.10+3 = ...7 (tận cùng là 7)
Tương tự ta có 1717 cũng có tận cùng là 7
Suy ra 4343 - 1717 tận cùng là 0, chia hết cho 10
B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)
=> B=(n-2)(n-1).n(n+1)(n+2)
Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0
=> Số tận cùng của B là 0
=> B chia hết cho 10 với mọi n thuộc Z
a, 10^n luôn có tổng các chữ số là 1 vì 10 ^n = 10..;1 + 0 + 0 + .... + 1 =1
mà 5^3 =125 , vì các số chia hết cho 9 đều có tổng các chữ số của số đó chia hết cho 9 , mà ; 1 + 2 + 5 +1 =9 MÀ 9 chia hết chia 9 nên 10^n + 5^3 chia hết cho 9
b,ta có : 43 ^43 > 17^17 ; 43 . 43 = ...9 ( có tận cùng là 9 )
17.17 = ...9 ( có tận cùng là 9 )
Vì những số chia hết cho 10 có tận cùng là 0 mà : (...9) - (...9) = (...0) ( có tận cùng là 0 )
Nên 43^43 - 17^17 chia hết cho 10
Cảm ơn bạn rất nhiều !