K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

\(a,2^{700}=\left(2^7\right)^{100}=128^{100}\)

\(5^{300}=\left(5^3\right)^{100}=125^{100}\)

Có \(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)

\(b,S=1+2+2^2+...+2^{50}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)

\(\Rightarrow2S-S=S=2^{51}-1< 2^{51}\)

27 tháng 7 2018

a) Ta có :

\(2^{700}=\left(2^7\right)^{100}=128^{100}\)

\(5^{300}=\left(5^3\right)^{100}=125^{100}\)

Vì \(128^{100}>125^{100}\)\(\Rightarrow\)\(2^{700}>5^{300}\)

Vậy  \(2^{700}>5^{300}\)

b) \(S=1+2+2^2+...+2^{50}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)

\(\Rightarrow S=2^{51}-1< 2^{51}\)

Vậy S < 251

_Chúc bạn học tốt_

12 tháng 10 2021

So sánh:

a) 5^300 và 3^500

b) (-16)^11 và (-32)^9

c) (2^2)^3 và 2^2^3

d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20

e) 4^30 và 3×24^10

g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51

20 tháng 9 2017

a) có 231=2.230=2.810

321=3.320=3.910

vì 2.810 < 3.910 nên 231 < 321

20 tháng 9 2017

b) 

có S = 1 + 2 + ... + 250

<=> S = 20 + 2+ 22 + 23 + ... + 250

=> 2S = 2(20 + 21 + 22 + 2+ ... + 250) = 21 + 22 + 23 + ... + 251

=> 2S - S =  21 + 22 + 23 + ... + 251 - ( 20 + 2+ 22 + 23 + ... + 250)

=> S = 21 + 22 + 23 + ... + 251 -  20 - 2- 22 - 23 - ... - 250

=> S = 251 - 20

=> S = 251 -1 < 251

=> S < 251

27 tháng 7 2016

2S=2(1+2+22+...+250)

2S=2+22+...+251

2S-S=(2+22+...+251)-(1+2+22+...+250)

S=251-1<251

=>S<251

26 tháng 4 2016

\(A=1+2+2^2+2^3+...+2^{50}\)

\(2A=2+2^2+2^3+2^4+...+2^{51}\)

\(A=2A-A=2^{51}-1<2^{51}\)

17 tháng 7 2016

\(S=1+2+2^2+....+2^{50}\)

\(2S=2+2^2+2^3+....+2^{51}\)

\(2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)

\(S=2^{51}-1\)

Vì \(2^{51}-1< 2^{51}\)

\(\Rightarrow S< 2^{51}\)

17 tháng 7 2016

\(2S=2+2^2+.........+2^{51}\)

\(2S-S=\left(2+2^2+.......+2^{51}\right)-\left(1+2+.......+2^{50}\right)\)

\(\Rightarrow S=2^{51}-1< 2^{51}\)

Vậy S<251

3 tháng 7 2016

\(A=1+2+2^2+2^3+...+2^{50}\)

\(2A=2+2^2+2^3+2^4+....+2^{51}\)

\(=>2A-A=\left(2+2^2+2^3+2^4+...+2^{51}\right)-\left(1+2+2^2+2^3+....+2^{50}\right)\)

\(=>A=2^{51}-1< 2^{51}=B=>A< B\)