9^x+2 + 9^x - 9^2 x 81=0
giúp mình giải gấp nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-9\right)^2-9\left(x-3\right)^2=0\)
\(< =>\left(x^2-9\right)^2-\left[3\left(x-3\right)\right]^2=0\)
\(< =>\left(x^2-9\right)^2-\left(3x-9\right)^2=0\)
\(< =>\left(x^2-9+3x-9\right)\left(x^2-9-3x+9\right)=0\)
\(< =>\left(x^2+3x-18\right)\left(x^2-3x\right)=0\)
\(=>\left[{}\begin{matrix}x^2+3x-18=0\\x^2-3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}\left(x+6\right)\left(x-3\right)=0\\x\left(x-3\right)=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=-6\\x=3\\x=0\end{matrix}\right.\)
giải giúp mik với a) 2^x+1 =64
b) 570-x: 3 và 17<x<20
c) (4x-9)-(x+111)=0
giúp mik với nha mik cần gấp
\(a,2^{x+1}=64\\ \Rightarrow a,2^{x+1}=2^6\\ \Rightarrow x+1=6\\ \Rightarrow x=5\)
\(b,x=18\)
\(c,\left(4x-9\right)-\left(x+111\right)=0\\ \Rightarrow4x-9-x-111=0\\ \Rightarrow3x-120=0\\ \Rightarrow3x=120\\ \Rightarrow x=40\)
\(a,\Leftrightarrow x^2-2x-x^2+5x=6\\ \Leftrightarrow3x=6\\ \Leftrightarrow x=2\)
\(b,\Leftrightarrow x^2-6x+9-x+9=0\\ \Leftrightarrow x^2-7x+18=0\\ \Leftrightarrow\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{23}{4}=0\\ \Leftrightarrow\left(x-\dfrac{7}{2}\right)^2+\dfrac{23}{4}=0\left(vôlí\right)\)
\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)
Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)
Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)
Bảng xét dấu:
x \(-\infty\) -3 1 2 \(+\infty\)
\(x-2\) - | - | - 0 +
\(x^2+2x-3\) + 0 - 0 + | +
\(f\left(x\right)\) - 0 + 0 - 0 +
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)
\(b)\dfrac{x^2-9}{-x+5}< 0.\)
Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)
Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)
\(-x+5=0.\Leftrightarrow x=5.\)
Bảng xét dấu:
x \(-\infty\) -3 3 5 \(+\infty\)
\(x^2-9\) + 0 - 0 + | +
\(-x+5\) + | + | + 0 -
\(g\left(x\right)\) + 0 - 0 + || -
Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)
\(25\sqrt{\dfrac{x-3}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\left(x\ge3\right)\)
\(=25\sqrt{\dfrac{1}{25}.\left(x-3\right)}-7\sqrt{\dfrac{4}{9}.\left(x-3\right)}-7\sqrt{x^2-9}+18\sqrt{\dfrac{1}{9}.\left(x^2-9\right)}=0\)
\(=5\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Rightarrow\dfrac{1}{3}\sqrt{x-3}-\sqrt{\left(x-3\right)\left(x+3\right)}=0\Rightarrow\sqrt{x-3}-3\sqrt{\left(x-3\right)\left(x+3\right)}=0\)
\(\Rightarrow\sqrt{x-3}\left(1-3\sqrt{x+3}\right)=0\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=3\sqrt{x+3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{26}{9}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{2}{5}\left(4x-3\right)^2=-\dfrac{5}{18}\)
\(\Leftrightarrow\left(4x-3\right)^2=\dfrac{25}{36}\)
\(\Leftrightarrow4x-3\in\left\{\dfrac{5}{6};-\dfrac{5}{6}\right\}\)
hay \(x\in\left\{\dfrac{23}{24};\dfrac{13}{24}\right\}\)
ĐKXĐ : \(x\ne\pm6\)
\(\frac{36}{x+6}+\frac{36}{x-6}=\frac{9}{2}\)
\(\frac{72\left(x-6\right)}{\left(x+6\right)\left(x-6\right)2}+\frac{72\left(x+6\right)}{\left(x-6\right)\left(x+6\right)2}=\frac{9\left(x+6\right)\left(x-6\right)}{2\left(x+6\right)\left(x-6\right)}\)
\(72\left(x-6\right)+72\left(x+6\right)=9\left(x+6\right)\left(x-6\right)\)
\(72x-432+72x+432=9x^2-324\)
\(144x=9x^2-324\)
\(144x-9x^2+324=0\)
\(-9x^2+144x+324=0\)
\(\Delta=144^2-4.\left(-9\right).324=32400>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-144-\sqrt{32400}}{2.\left(-9\right)}=\frac{-144-180}{-18}=18\)
\(x_2=\frac{-144+\sqrt{32400}}{2.\left(-9\right)}=\frac{-144+180}{-18}=-2\)
Đk : x khác 6 và -6
\(\frac{36}{x+6}+\frac{36}{x-6}=\frac{9}{2}\)
\(< =>\frac{36\left(x-6\right)+36\left(x+6\right)}{\left(x+6\right)\left(x-6\right)}=\frac{9}{2}\)
\(< =>\frac{36x-216+36x+216}{x^2-6x+6x-36}=\frac{9}{2}\)
\(< =>\frac{72x}{x^2-6^2}=\frac{9}{2}\)
\(< =>144x=9x^2-324\)
\(< =>9x^2-144x-324=0\)
Ta có : \(\Delta=\left(-144\right)^2-4.9.\left(-324\right)=32400\)
\(< =>\sqrt{\Delta}=180\)
Vì delta > 0 nên pt có 2 nghiệm phân biệt
\(x_1=\frac{144+180}{18}=18\)
\(x_2=\frac{144-180}{18}=-2\)
Vậy ...
đề tào lao