Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x.1+1^2\right)\)
\(=\left(x-1\right)^3-\left(x-1\right)^3\)
\(=0\)
d) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2\)
\(=\left(x-3\right)^3-\left(x-3\right)\left(x^2+x.3+3^2\right)+6\left(x+1\right)^2\)
\(=\left(x-3\right)^3-\left(x-3\right)^3+6\left(x+1\right)^2\)
\(=0+6\left(x+1\right)^2\)
\(=6\left(x+1\right)^2\)
1:
a: =>(|x|+4)(|x|-1)=0
=>|x|-1=0
=>x=1; x=-1
b: =>x^2-4>=0
=>x>=2 hoặc x<=-2
d: =>|2x+5|=2x-5
=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0
=>x=0(loại)
\(\left(x+1\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=2\)
\(\Leftrightarrow x^2+4x+3-x^2-3x+10=2\)
\(\Leftrightarrow x=-11\)
d. 2x2(x - y) + 2y(y - x)
= 2x2(x - y) - 2y(x - y)
= (2x2 - 2y)(x - y)
= 2(x2 - y)(x - y)
e. 5a2b(a - 2b) - 2a(2b - a)
= 5a2b(a - 2b) + 2a(a - 2b)
= (5a2b + 2a)(a - 2b)
= a(5ab + 2)(a - 2b)
f. 4x2y(x - y) + 9xy2(x - y)
= (4x2y + 9xy2)(x - y)
= xy(4x + 9y)(x - y)
g. 50x2(x - y)2 - 8y2(y - x)2
= 50x2(x2 - 2xy + y2) - 8y2(y2 - 2xy + x2)
= 50x2(x2 - 2xy + y2) - 8y2(x2 - 2xy + y2)
= 50x2(x - y)2 - 8y2(x - y)2
= (50x2 - 8y2)(x - y)2
= 2(25x2 - 4y2)(x - y)2.
\(D=\dfrac{1}{3-\sqrt{7}}-\dfrac{1}{3+\sqrt{7}}\)
\(=\dfrac{3+\sqrt{7}-3+\sqrt{7}}{2}\)
\(=\sqrt{7}\)
\(\frac{x+5}{13}+\frac{x+6}{12}+\frac{x+7}{11}=\frac{x+8}{10}+\frac{x+9}{9}+\frac{x+10}{8}\)
\(\Leftrightarrow\left(\frac{x+5}{13}+1\right)+\left(\frac{x+6}{12}+1\right)+\left(\frac{x+7}{11}+1\right)=\left(\frac{x+8}{10}+1\right)+\left(\frac{x+9}{9}+1\right)+\left(\frac{x+10}{8}\right)\)
\(\Leftrightarrow\frac{x+18}{13}+\frac{x+18}{12}+\frac{x+18}{11}=\frac{x+18}{10}+\frac{x+18}{9}+\frac{x+18}{8}\)
ta chuyển về vế trái được
\(\Leftrightarrow\left(x+18\right)\left(\frac{1}{13}+\frac{1}{122}+\frac{1}{11}-\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)=0\)
\(\Leftrightarrow x+2018=0\)(do cái còn lại khác 0)
\(\Leftrightarrow x=-2018\)
mình nghĩ đề cậu viết thiếu mình sửa rồi
Ta có:
\(\frac{x+5}{13}+\frac{x+6}{12}+\frac{x+7}{11}=\frac{x+8}{10}+\frac{x+9}{9}+\frac{x+10}{8}\)
\(\Rightarrow\left(\frac{x+5}{13}+1\right)+\left(\frac{x+6}{12}+1\right)+\left(\frac{x+7}{11}+1\right)=\left(\frac{x+8}{10}+1\right)+\left(\frac{x+9}{9}+1\right)+\left(\frac{x+10}{8}+1\right)\)
\(\Rightarrow\frac{x+18}{13}+\frac{x+18}{12}+\frac{x+18}{11}=\frac{x+18}{10}+\frac{x+18}{9}+\frac{x+18}{8}\)
\(\Rightarrow\frac{x+18}{13}+\frac{x+18}{12}+\frac{x+18}{11}-\frac{x+18}{10}-\frac{x+18}{9}-\frac{x+18}{8}=0\)
\(\Rightarrow\left(x+18\right)\times\left(\frac{1}{13}+\frac{1}{12}+\frac{1}{11}-\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)=0\)
Vì \(\frac{1}{13}+\frac{1}{12}+\frac{1}{11}-\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\ne0\)
\(\Rightarrow x+18=0\)
\(\Rightarrow x=-18\)
Vậy phương trình có nghiệm là x = -18
a)Tách 3=1+1+1 rồi phân phát chúng cho 3 phân số được là
\(\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{3}=0\)<=>(x+10)\(\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{3}\right)=0\)
Dễ rồi
bNguyễn Thị Mai Huyền xem có câu hỏi giống đấy
ĐKXĐ : \(x\ne\pm6\)
\(\frac{36}{x+6}+\frac{36}{x-6}=\frac{9}{2}\)
\(\frac{72\left(x-6\right)}{\left(x+6\right)\left(x-6\right)2}+\frac{72\left(x+6\right)}{\left(x-6\right)\left(x+6\right)2}=\frac{9\left(x+6\right)\left(x-6\right)}{2\left(x+6\right)\left(x-6\right)}\)
\(72\left(x-6\right)+72\left(x+6\right)=9\left(x+6\right)\left(x-6\right)\)
\(72x-432+72x+432=9x^2-324\)
\(144x=9x^2-324\)
\(144x-9x^2+324=0\)
\(-9x^2+144x+324=0\)
\(\Delta=144^2-4.\left(-9\right).324=32400>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-144-\sqrt{32400}}{2.\left(-9\right)}=\frac{-144-180}{-18}=18\)
\(x_2=\frac{-144+\sqrt{32400}}{2.\left(-9\right)}=\frac{-144+180}{-18}=-2\)
Đk : x khác 6 và -6
\(\frac{36}{x+6}+\frac{36}{x-6}=\frac{9}{2}\)
\(< =>\frac{36\left(x-6\right)+36\left(x+6\right)}{\left(x+6\right)\left(x-6\right)}=\frac{9}{2}\)
\(< =>\frac{36x-216+36x+216}{x^2-6x+6x-36}=\frac{9}{2}\)
\(< =>\frac{72x}{x^2-6^2}=\frac{9}{2}\)
\(< =>144x=9x^2-324\)
\(< =>9x^2-144x-324=0\)
Ta có : \(\Delta=\left(-144\right)^2-4.9.\left(-324\right)=32400\)
\(< =>\sqrt{\Delta}=180\)
Vì delta > 0 nên pt có 2 nghiệm phân biệt
\(x_1=\frac{144+180}{18}=18\)
\(x_2=\frac{144-180}{18}=-2\)
Vậy ...