K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

New (cách mới) : Đặt \(x=\frac{49-\sqrt{2401-4n}}{2}\) là số chính phương.

\(\frac{49-\sqrt{2401-4n}}{2}\le\frac{49}{2}\), các số chính phương nhỏ hơn 49/2 là 0; 1; 4; 9; 16

+ Nếu x= 16 -> \(49-\sqrt{2401-4n}=\)32 => \(\sqrt{2401-4n}=\)17 (loại)

+ Nếu x= 9 -> \(49-\sqrt{2401-4n}=\)18 => \(\sqrt{2401-4n}=\)31 (loại)

+ Nếu x= 4 -> \(49-\sqrt{2401-4n}=\)8 => \(\sqrt{2401-4n}=\)41 (loại)

+ Nếu x= 1 -> \(49-\sqrt{2401-4n}=\)2 => \(\sqrt{2401-4n}=\)47 (loại)

+ Nếu x= 0 -> \(49-\sqrt{2401-4n}=\)0 => \(\sqrt{2401-4n}=\)49 => 2041 - 4n = 492 = 2041

=> 4n = 0 => n =0

 Thay n=0 vào biểu thức được kết quả là 7 nên n=0 để biểu thức có giá trị nguyên.

8 tháng 6 2017

\(\sqrt{\frac{49+\sqrt{2401-4n}}{2}}+\sqrt{\frac{49-\sqrt{2401-4n}}{2}}\)

ĐK: 2401 - 4n ≥ 0 => n ≤ 600

Đặt x = \(\sqrt{2401-4n}\)

Để biểu thức có giá trị nguyên thì 2401-4n là số chính phương; (49+x)/2 và (49-x)/2 là số chính phương

=>(492 - x2)/4 là số chính phương

=>   (2401 - x2)/4 = (2401-2401+4n)/4 = n là số chính phương

Ta có: n=k2 (k≥0)

=> 492 - (2k)2 = (49-2k)(49+2k) là số chính phương.

Thay k từ 0 đến 24 (nếu k>24 thì 49-2k<0) chỉ có k=0 thỏa mãn để (49-2k)(49+2k) là số chính phương.  => n =0

Vậy n =0 để biểu thức có giá trị nguyên (=7)

----

Tới bước cuối ko nghĩ ra đc nữa nên mò :3

23 tháng 10 2016

Ta thấy với x = 0 và x = 1 thì E không phải số nguyên nên ta xét x > 1

Ta chứng minh

\(\sqrt{36x^2+10x+3}< \sqrt{1024x^2+1024x+256}\)

Và \(36x^2+10x+3>16x^2+8x+1\)Ta thấy rằng với x > 1 thì cả 2 cái trên đều đúng

Từ đó ta có

\(\sqrt{x^2+\sqrt{4x^2+\sqrt{16x^2+8x+1}}}< E< \sqrt{x^2+\sqrt{16x^2+\sqrt{1024x^2+1024x+256}}}\)

\(\Leftrightarrow\sqrt{x^2+\sqrt{4x^2+4x+1}}< E< \sqrt{x^2+\sqrt{16x^2+32x+16}}\)

\(\Leftrightarrow\sqrt{x^2+2x+1}< E< \sqrt{x^2+4x+4}\)

\(\Leftrightarrow x+1< E< x+2\)

Vì E nằm giữa hai số nguyên liên tiếp nên E không phải là số nguyên

8 tháng 10 2018

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\ge2014\)

\(\Rightarrow\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n}-\sqrt{n+1}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}\)

\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n}-\sqrt{n+1}}{n-\left(n+1\right)}\)

\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n}-\sqrt{n+1}}{-1}\)

\(=\frac{1-\sqrt{n+1}}{-1}=\sqrt{n+1}-1\ge2014\)

                                  \(\Leftrightarrow\sqrt{n+1}\ge2015\)

                                 \(\Leftrightarrow n+1=2015^2=4060225\)

\(V~~n=4060224\)