Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
New (cách mới) : Đặt \(x=\frac{49-\sqrt{2401-4n}}{2}\) là số chính phương.
Mà \(\frac{49-\sqrt{2401-4n}}{2}\le\frac{49}{2}\), các số chính phương nhỏ hơn 49/2 là 0; 1; 4; 9; 16
+ Nếu x= 16 -> \(49-\sqrt{2401-4n}=\)32 => \(\sqrt{2401-4n}=\)17 (loại)
+ Nếu x= 9 -> \(49-\sqrt{2401-4n}=\)18 => \(\sqrt{2401-4n}=\)31 (loại)
+ Nếu x= 4 -> \(49-\sqrt{2401-4n}=\)8 => \(\sqrt{2401-4n}=\)41 (loại)
+ Nếu x= 1 -> \(49-\sqrt{2401-4n}=\)2 => \(\sqrt{2401-4n}=\)47 (loại)
+ Nếu x= 0 -> \(49-\sqrt{2401-4n}=\)0 => \(\sqrt{2401-4n}=\)49 => 2041 - 4n = 492 = 2041
=> 4n = 0 => n =0
Thay n=0 vào biểu thức được kết quả là 7 nên n=0 để biểu thức có giá trị nguyên.
\(\sqrt{\frac{49+\sqrt{2401-4n}}{2}}+\sqrt{\frac{49-\sqrt{2401-4n}}{2}}\)
ĐK: 2401 - 4n ≥ 0 => n ≤ 600
Đặt x = \(\sqrt{2401-4n}\)
Để biểu thức có giá trị nguyên thì 2401-4n là số chính phương; (49+x)/2 và (49-x)/2 là số chính phương
=>(492 - x2)/4 là số chính phương
=> (2401 - x2)/4 = (2401-2401+4n)/4 = n là số chính phương
Ta có: n=k2 (k≥0)
=> 492 - (2k)2 = (49-2k)(49+2k) là số chính phương.
Thay k từ 0 đến 24 (nếu k>24 thì 49-2k<0) chỉ có k=0 thỏa mãn để (49-2k)(49+2k) là số chính phương. => n =0
Vậy n =0 để biểu thức có giá trị nguyên (=7)
----
Tới bước cuối ko nghĩ ra đc nữa nên mò :3
Bài 12:
Để N là số nguyên thì \(\sqrt{x}+3⋮\sqrt{x}+5\)
\(\Leftrightarrow-2⋮\sqrt{x}+5\)
\(\Leftrightarrow\sqrt{x}+5\in\left\{1;-1;2;-2\right\}\)(vô lý
Bài 11:
Để M là số nguyên thì \(3\sqrt{x}+1⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{4;8\right\}\)
\(\Leftrightarrow x\in\left\{1;25\right\}\)
Câu 2:
2) Ta có: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
Câu 2 :
Gọi : vận tốc của người đi chậm là : x (km/h) ( x > 0 )
Vận tốc của người đi nhanh : x + 4 (km/h)
Vi : người đi chậm đến muộn hơn : 45 phút \(=\dfrac{3}{4}\left(h\right)\)
Khi đó :
\(\dfrac{36}{x}-\dfrac{36}{x+4}=\dfrac{3}{4}\)
\(\Leftrightarrow\left[36\cdot\left(x+4\right)-36x\right]\cdot4=3x\cdot\left(x+4\right)\)
\(\Leftrightarrow3x^2+12x-144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(n\right)\\x=16\left(l\right)\end{matrix}\right.\)
tham khảo: Câu hỏi của Lê Thị Ngọc Duyên - Toán lớp 9 | Học trực tuyến
ĐK: \(x\ne25,x\ge0\).
\(T=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{5}{\sqrt{x}+5}-\frac{10\sqrt{x}}{x-25}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-5\left(\sqrt{x}-5\right)-10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{x+5\sqrt{x}-5\sqrt{x}+25-10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}=1-\frac{10}{\sqrt{x}+5}\)
\(T\)nguyên mà \(x\)nguyên nên \(\sqrt{x}+5\inƯ\left(10\right)\)mà \(\sqrt{x}+5\ge5\)nên \(\orbr{\begin{cases}\sqrt{x}+5=5\\\sqrt{x}+5=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=25\left(l\right)\end{cases}}\).