K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

1/ Ta có AB//=CD (t/c hình bình hành)

KA=KB; IC=ID (đề bài)

=> AK//=IC => AKCI là hình bình hành => AI//CK

2/ Từ AI//CK và KB=KA theo talet

\(\Rightarrow\frac{KB}{KA}=\frac{NB}{NM}=1\Rightarrow NB=NM\left(1\right)\)

Từ AI//CK và ID=IC theo talet

\(\Rightarrow\frac{ID}{IC}=\frac{MD}{NM}=1\Rightarrow MD=MN\left(2\right)\)

Mà BD = MD + NM + NB (3)

Từ (1) (2) và (3) => MD=NM=NB => \(DM=\frac{BD}{3}\)

3/ Gọi O là giao của AC và BD

Do ABCD là hình bình hành => BD cắt BC tại O là trung điểm của AC (t/c đường chéo hbh)

Do AKCI là hình bình hành => IK cắt BC tại trung điểm O của BC (t/c đường chéo hbh)

=> BD; AC; IK đồng qui tại O

19 tháng 12 2017

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Theo câu a, AICK là hình bình hành

⇒ AK//CI. Khi đó , ta có:Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Mặt khác, ta lại có: AI = IB, CK = KD theo giải thiết:

ÁP dụng định lý đường trung bình vào tam giác ABM, DCN ta có:

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ DM = MN = NB

2 tháng 10 2017

a ) AK = 1/2 AB

CI = 1/2 CD

Mà AB //= CD nên AK //= CI suy ra

AKCI - hình bình hành

Nên AI // CK

b )  Xét t/g DNC có :

I là trung điểm CD mà IM // NC

=> IM là đường trung bình của t/g DNC

=> MD = MN    ( 1 )

Xét t/g ABM có :

K là trung điểm AB mà KN // AM

=> KN là đường trung bình của t/g ABM   ( 2 )

Từ ( 1 ) ; ( 2 ) suy ra DM = MN = NB

5 tháng 3 2019

Để học tốt Toán 8 | Giải toán lớp 8

a) + K là trung điểm của AB ⇒ AK = AB/2.

+ I là trung điểm của CD ⇒ CI = CD/2.

+ ABCD là hình bình hành

⇒ AB // CD hay AK // CI

và AB = CD ⇒ AB/2 = CD/2 hay AK = CI

+ Tứ giác AKCI có AK // CI và AK = CI

⇒ AKCI là hình bình hành.

b) + AKCI là hình bình hành

⇒ AI//KC hay MI//NC.

ΔDNC có: DI = IC, IM // NC ⇒ DM = MN (1)

+ AI // KC hay KN//AM

ΔBAM có: AK = KB, KN//AM ⇒ MN = NB (2)

Từ (1) và (2) suy ra DM = MN = NB.

12 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Suy ra:AN//CM

a: Xét tứ giác AECK có

AK//EC

AK=EC

Do đó: AECK là hình bình hành