K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:góc yOn=1/2 góc xOy(On là tia phân giác của góc xOy)

Góc yOn =1/2 góc yOz(On là tia phân giác của góc yOz)

Suy ra: góc yOm+góc yOn=1/2 góc xOy+1/2 góc yOz

Suy ra góc mOn=1/2(góc xOy+góc yOz)

=1/2.180 độ =90 độ

Vậy góc mOn =90 độ

28 tháng 10 2021

Tham khảo nhéundefined

Ta có góc \(\widehat{\text{xOz}}\) + \(\widehat{\text{zOy}}\) = 180\(^o\)(kề bù)

=> 2(\(\widehat{mOz}\) +\(\widehat{zOn}\)) = 180\(^o\) 

=> \(\widehat{mOz}\)\(\widehat{zOn}\) = 90\(^o\)

=>\(\widehat{mOn}\) = 90\(^o\) (vì \(\widehat{xOz}\)\(\widehat{xOz}\)  kề nhau)

=> Tia Om vuông góc tia On 

Vậy 2 tia phân giác của 1 cặp góc kề bù thì vuông góc với nhau

25 tháng 12 2022

tham khảo :

hình? Gt, kl? Hướng chứng minh? Làm cái gì mà sơ sài v?

16 tháng 11 2017
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. * Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. * Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy nên: { góc uOz = 1/2 góc xOz { góc zOv = 1/2 góc zOy Suy ra: { 2 góc uOz = góc xOz { 2 góc zOv = góc zOy Ta lại có: góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) => 2 góc uOz + 2 góc zOv = 180 độ => 2(góc uOz + góc zOv) = 180 độ => góc uOz + góc zOv = 90 độ => góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) => Tia Ou vuông góc Tia Ov Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
16 tháng 11 2017

Xin lỗi nha tớ ngại  đánh máy lắm( mà cũng không biết giải nữa)

26 tháng 10 2021

Giả sử góc xOy bẹt, tia Oz và Om,On lần lượt là phân giác góc xOz và yOz

\(\Rightarrow\widehat{mOn}=\widehat{mOz}+\widehat{zOn}=\dfrac{1}{2}\widehat{xOz}+\dfrac{1}{2}\widehat{yOz}=\dfrac{1}{2}\left(\widehat{xOz}+\widehat{yOz}\right)=\dfrac{1}{2}\cdot\widehat{xOy}=\dfrac{1}{2}\cdot180^0=90^0\)

Do đó Om vuông góc On

Suy ra đpcm

26 tháng 10 2021

Bạn tham khảo nha:

24 tháng 6 2016

Gọi : góc xOy kề bù với góc yOz . Ot là tia phân giác của góc xOy . Ot' là tia phân giác của góc xOz (bạn tự vẽ hình nha).

Ta có :

Do Ot là tia phân giác của góc xOy nên góc \(xOt=tOy=\frac{1}{2}xOy\) .

Do Ot' là tia phân giác của góc yOz nên góc \(yOt'=t'Oz=\frac{1}{2}yOz\).

\(\Leftrightarrow\) Góc \(tOy+yOt'=\frac{1}{2}xOy+\frac{1}{2}yOz=\frac{1}{2}\left(xOy+yOz\right)\) .

Mà \(xOy+yOz=180\left(độ\right)\) .

Do đó : \(tOy+yOt'=\frac{1}{2}\left(xOy+yOz\right)=\frac{1}{2}.180\left(độ\right)=90\left(độ\right)\) .

Vậy : Hai tia phân giác của 2 góc kề bù vuông góc với nhau .

24 tháng 6 2016

Gọi \(\widehat{xOy}\) và \(\widehat{yOz}\) là hai góc kề bù, Om và On lần lượt là hai tia phân giác của hai góc đó

Vì Om và On lần lượt là các tia phân giác của \(\widehat{xOy}\) và nên

\(\begin{cases}\widehat{mOy}=\frac{1}{2}\widehat{xOy}\\\widehat{yOn}=\frac{1}{2}\widehat{yOz}\end{cases}\) => \(\begin{cases}2\widehat{mOy}=\widehat{xOy}\\2\widehat{yOn}=\widehat{yOz}\end{cases}\)

Ta lại có \(\widehat{xOy}+\widehat{yOz}\) = 180 độ (vì \(\widehat{xOy}\) và \(\widehat{yOz}\) là hai góc kề bù)

=> 2\(\widehat{mOy}\) +2\(\widehat{yOn}\) =180

=>2(\(\widehat{mOy}+\widehat{yOn}\))=180

=>\(\widehat{mOy}+\widehat{yOn}\) = 90

=>Om vuông góc với On

=>đpcm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21 tháng 6 2015

O x z y u v

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

a: loading...

b: 

GT

góc aOm và góc bOm là hai góc kề bù

On,Ox lần lượt là phân giác của góc aOm và góc bOm

KLgóc xOn=90 độ

 

1 tháng 10 2016

x y z O m n

Cho \(\widehat{xOy};\widehat{yOz}\) là 2 góc kề bù

\(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^0\)

Gọi Om ; On lần lượt là tia phân giác của 2 goc đó

\(\Rightarrow\begin{cases}\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\\\widehat{nOy}=\frac{1}{2}.\widehat{yOz}\end{cases}\)

\(\Rightarrow\widehat{mOy}+\widehat{nOy}=\frac{\widehat{xOy}+\widehat{yOx}}{2}\)

\(\Rightarrow\widehat{mOn}=\frac{180^0}{2}\)

\(\Rightarrow\widehat{mOn}=90^0\)

=> đpcm

1 tháng 10 2016

Ta có : 

 Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
=> Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau

15 tháng 9 2019

O A B C M N

Gọi AOC và COB là hai góc kề bù , OM và ON theo thứ tự là các tia phân giác của hai góc ấy . Ta có :

\(\widehat{MOC}+\widehat{CON}=\frac{\widehat{AOC}}{2}+\frac{\widehat{COB}}{2}=\frac{\widehat{AOC}+\widehat{COB}}{2}=\frac{180^0}{2}=90^0\)

Ta thấy tia OC nằm giữa hai tia OM và ON nên \(\widehat{MOC}+\widehat{CON}=\widehat{MON}\)

Do đó MON = 900 . Vậy \(OM\perp ON\)

30 tháng 7 2020

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.

* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.

* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy

nên:

{ góc uOz = 1/2 góc xOz

{ góc zOv = 1/2 góc zOy

Suy ra:

{ 2 góc uOz = góc xOz

{ 2 góc zOv = góc zOy

Ta lại có:

góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)

=> 2 góc uOz + 2 góc zOv = 180 độ

=> 2(góc uOz + góc zOv) = 180 độ

=> góc uOz + góc zOv = 90 độ

=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)

=> Tia Ou vuông góc Tia Ov

Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.