a) \(\dfrac{1}{2}+\dfrac{-1}{-3}-\dfrac{5}{12}< 2x< \dfrac{12}{-31}+\dfrac{136}{31}\)
b) \(\dfrac{-2}{5}< \dfrac{x}{15}< \dfrac{1}{6}\)
HéP :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{157}{8}\cdot\dfrac{12}{7}-\dfrac{61}{4}\cdot\dfrac{12}{7}\)
\(=\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{122}{8}\right)\)
\(=\dfrac{12}{7}\cdot\dfrac{35}{8}=5\cdot\dfrac{3}{2}=\dfrac{15}{2}\)
b: \(=\dfrac{2}{15}-\dfrac{2}{15}\cdot5+\dfrac{3}{15}\)
\(=\dfrac{1}{3}-\dfrac{2}{3}=-\dfrac{1}{3}\)
c: \(=\left(\dfrac{10}{3}+\dfrac{5}{2}\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{11}{31}\)
\(=\dfrac{35}{6}:\dfrac{-31}{30}-\dfrac{11}{31}\)
\(=\dfrac{35}{6}\cdot\dfrac{30}{-31}-\dfrac{11}{31}\)
\(=\dfrac{-35\cdot5-11}{31}=\dfrac{-186}{31}=-6\)
A=\(\left[\dfrac{\dfrac{42}{31}.\dfrac{31}{7}-\left(15-\dfrac{2}{3}\right)}{\dfrac{29}{6}+\dfrac{1}{6}.\dfrac{20}{3}}\right].\dfrac{31}{50}\)
= \(\left(\dfrac{6-\dfrac{43}{3}}{\dfrac{29}{6}+\dfrac{10}{9}}\right).\dfrac{31}{50}\)=\(\left(\dfrac{\dfrac{-25}{3}}{\dfrac{107}{18}}\right).\dfrac{31}{50}\)=\(\dfrac{-150}{107}.\dfrac{31}{50}\)=\(\dfrac{-93}{107}\)
a) Ta có: \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)
\(\Leftrightarrow\dfrac{3\left(2x-1\right)}{15}-\dfrac{5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)
\(\Leftrightarrow6x-3-5x+10-x-7=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
a: \(\Leftrightarrow\dfrac{x+1}{2x+1}=\dfrac{x+4}{2x+6}\)
=>(x+1)(2x+6)=(2x+1)(x+4)
\(\Leftrightarrow2x^2+6x+2x+6=2x^2+8x+x+4\)
=>9x+4=8x+6
=>x=2
b: \(x^2+5x=0\)
=>x(x+5)=0
=>x=0 hoặc x=-5
`a)1/2+[-1]/[-3]-5/12 < 2x < 12/[-31]+136/31`
`186/372+124/372-155/372 < [744x]/372 < [-144]/372+1632/372`
`186+124-155 < 744x < -144+1632`
`155 < 744x < 1488`
`155:744 < 744x:744 < 1488:744`
`5/24 < x < 2`
Vậy `5/24 < x < 2`
__________________________________________________
`b)[-2]/5 < x/15 < 1/6`
`[-12]/30 < [2x]/30 < 5/30`
`-12 < 2x < 5`
`-12:2 < 2x:2 < 5:2`
`-6 < x < 5/2`
Vậy `-6 < x < 5/2`
Giải:
a) x - \(\dfrac{9}{25}\)= \(\dfrac{16}{25}\)
x = \(\dfrac{16}{25}\)+\(\dfrac{9}{25}\)
x = \(\dfrac{25}{25}\)
x = 1
b) \(\dfrac{-12}{30}\)<\(\dfrac{x}{30}\)<\(\dfrac{5}{30}\)
=> x có thể bằng \(\dfrac{-11}{30}\) đến \(\dfrac{4}{30}\)
=> x bằng -5; -4; -3; -2; -1;0;1;2