Tìm GTLN của \(A=\sqrt{3x-5}+\sqrt{7-3x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(A_{max}=2\) khi \(3x-5=7-3x\Leftrightarrow x=2\)
Đã từng lm qua nhưng ko chắc á
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(ĐKXD\): \(\frac{5}{3}\le x\le\frac{7}{3}\)
\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
Áp dụng BĐT Cô - si Ta có : \(A^2\le2+\left(3x-5+7-3x\right)=4\)
Dấu ''='' xãy ra \(\Leftrightarrow3x-5=7-3x\Leftrightarrow x=2\)
Vậy Max A2=4 => Max A=2 khi x=2
Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le\left(1^2+1^2\right)\left(3x-5+7-3x\right)\left(\dfrac{5}{3}\le x\le\dfrac{7}{3}\right)\)
\(\Leftrightarrow\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le4\)
\(\Leftrightarrow\sqrt{3x-5}+\sqrt{7-3x}\le2\)
\(\Rightarrow A_{Max}=2."="\Leftrightarrow x=2\left(TM\right)\)
+ Áp dụng BĐT Cô - si :
\(\sqrt{3x-9}=\frac{3.\sqrt{3x-9}}{3}=\frac{\frac{\sqrt{9.\left(3x-9\right)}}{2}}{3}=\frac{x}{2}\)
\(\sqrt{7-x}=\sqrt{1.\left(7-x\right)}\le\frac{1+7-x}{2}=\frac{8-x}{2}\)
Cộng theo vế ta được :
\(\sqrt{3x-9}+\sqrt{7-x}\le\frac{x+8-x}{2}=4\)
Dấu " = " xảy ra \(\Leftrightarrow x=6\)
Chúc bạn học tốt !!!
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(ĐKXĐ:\)\(\frac{5}{3}\le x\le\frac{7}{3}\)
\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
Áp dụng BĐT Cô-si ta có :
\(A^2\le2+\left(3x-5+7-3x\right)=4\)
Dấu = xảy ra \(\Leftrightarrow\)\(3x-5=7-3x\Leftrightarrow x=2\)
Vậy Max \(A^2=4\)suy ra Max A = 2 khi x = 2
\(A\le\sqrt{2\left(3x-5+7-3x\right)}=\sqrt{2.2}=2\)
\(A_{max}=2\) khi \(x=2\)
\(B\le\sqrt{2\left(x-5+23-x\right)}=\sqrt{2.18}=6\)
\(B_{max}=6\) khi \(x=14\)
\(C=-\left(2-x\right)+\sqrt{2-x}+2=-\left(\sqrt{2-x}-\frac{1}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)
\(C_{max}=\frac{17}{8}\) khi \(x=\frac{31}{16}\)
\(D\le\frac{1}{2}\left(x^2+1-x^2\right)=\frac{1}{2}\)
\(D_{max}=\frac{1}{2}\) khi \(x=\frac{\sqrt{2}}{2}\)
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
\(=2+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
\(\le2+\left(3x-5\right)+\left(7-3x\right)\)(Bđt Cô-si)
\(=2+2=4\)
\(\Rightarrow A^2\le4\Rightarrow A\le2\)
Dấu = khi \(\sqrt{3x-5}=\sqrt{7-3x}\Leftrightarrow x=2\)
Vậy....
tks bạn nha