Cho tam giác ABC , gọi D,E lần lượt là trung điểm của các cạnh AB , AC .Gọi các điểm H,G sao cho D là trung điểm của HE , E là trung điểm của BG.
Chứng minh 3 điểm H , A, G thẳng hàng .
GIÚP MK VS NHÉ ! BÀI NÀY NÂNG CAO!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đã là tam giác ABC thì đương nhiên 3 điểm A; B; C không thẳng hàng
Xem lại đề bài
xét ΔBEC và ΔAEG có:
góc AEG = góc BEC ( đối đỉnh)
AE= AC ( E là trung điểm của AC)
BE= EG ( E là trung điểm của BG)
--> ΔBEC = ΔGEA ( c.g.c)
-->góc EBC = góc EGA ( hai góc tương ứng)
Vì GB cắt AG và BC tạo thành một cặp góc so le trong bằng nhau ( góc EBC = góc EGA)
--->AG // BC
Xét ΔBDC và ΔHDA có:
DB = DA ( D là trung điểm của AB )
DH = DC ( D là trung điểm của HC)
góc HDA = góc BDC ( đối đỉnh)
---> ΔBDC = ΔADH ( c.g.c)
--->góc H = góc DCB ( hai góc tương ứng)
vì HC cắt HA và BC tạo ra hai cặp góc so le trong bằng nhau (góc H = góc DCB)
--->HA // BC
Vì HA // BC
AG // BC
----> H, A, G thẳng hàng
xét ΔBEC và ΔAEG có:
góc AEG = góc BEC ( đối đỉnh)
AE= AC ( E là trung điểm của AC)
BE= EG ( E là trung điểm của BG)
--> ΔBEC = ΔGEA ( c.g.c)
-->góc EBC = góc EGA ( hai góc tương ứng)
Vì GB cắt AG và BC tạo thành một cặp góc so le trong bằng nhau ( góc EBC = góc EGA)
--->AG // BC
Xét ΔBDC và ΔHDA có:
DB = DA ( D là trung điểm của AB )
DH = DC ( D là trung điểm của HC)
góc HDA = góc BDC ( đối đỉnh)
---> ΔBDC = ΔADH ( c.g.c)
--->góc H = góc DCB ( hai góc tương ứng)
vì HC cắt HA và BC tạo ra hai cặp góc so le trong bằng nhau (góc H = góc DCB)
--->HA // BC
Vì HA // BC
AG // BC
----> H, A, G thẳng hàng
Xét tứ giác AHBC có
D là trung điểm của AB
D là trung điểm của HC
Do đó: AHBC là hình bình hành
Suy ra: AH//BC
Xét tứ giác ABCG có
E là trung điểm của AC
E là trung điểm của BG
Do đó: ABCG là hình bình hành
Suy ra: AG//BC
Ta có: AH//BC
AG//BC
mà AH,AG có điểm chung là A
nên H,A,G thẳng hàng
Đề sai rồi bạn. Cho ΔABC thì làm sao A,B,C thẳng hàng được?
Đề sai rồi bạn. Đã cho ΔABC rồi thì làm sao A,B,C thẳng hàng được?
Xét tam giác HAD và tam giác BCD:
AD = BD (trung điểm)
D1 = D2 (đối đỉnh)
HD = DC (trung điểm)
=> tam giác HAD = tam giác CBD
=> góc H = góc C lớn
=> HA // BC (1)
Xét tương tự với tam giác AGE và tam giác EBC
=> tam giác AGE = tam giác EBC
=> G = B lớn
=> GA // BC (2)
Từ (1) và (2) => GA // BC (từ vuông góc - song song)
=> H, A, G thẳng hàng
Bạn tham khảo tại đây nhé!
https://h.vn/hoi-dap/question/142377.html
Ta xét tam giác NEA và tam giác NBC
NE = NC ( N là trung điểm EC )
góc ANE = góc BNC ( hai góc đối đỉnh )
NA = NB ( gt )
=> tam giác NAE = tam giác NBC
=> góc EAN = góc ABC ( hai góc tương ứng ) (1)
Chứng minh tương tự: tam giác MAD = tam giác MBC
=> góc DAM = góc ACB ( hai góc tương ứng ) (2)
Ta có : góc ABC + góc ACB + góc BAC = 180 ( tổng ba góc trong tam giác )
(1),(2)=> góc EAB + góc BAC + góc DAC = 180
=> Ba điểm E, D. A thẳng hàng