Cho tam giác ABC có B = 900, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ∆ ABM = ∆ ECM
b) AC > CE.
c) góc BAM > gócMAC
d) BE //AC
e) EC ┴ BC
Giúp mik với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMBA và ΔMCE có
MB=MC
góc BMA=góc CME
MA=ME
=>ΔMBA=ΔMCE
b: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
=>ABEC là hình bình hành
=>BE//AC
a.Xét Δ ABM và Δ ECM có:
AM=ME (gt)
^AMB=^EMC( 2 góc đối đỉnh)
^A1=^E1(2 góc T/ứ)
a: Xet ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b; góc BAM=góc CDA
mà góc CDA>góc CAM
nên góc BAM>góc CAM
a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: AC>AB
=>AC>CE
c: góc BAM=góc CEA
mà góc CEA>góc CAM
nên góc BAM>góc CAM
a) Xét tam giác ABM và tam giác ECM có:
AM =ME (gt)
góc AMB=góc EMC (đối đỉnh)
BM=CM (AM là trung tuyến)
Do đó tam giác ABM = tam giác ECM (c-g-c)
c) Từ tam giác ABM= tam giác ECM
=> góc BAM = góc MEC (cặp góc tương ứng)
a: Xét ΔMBA và ΔMCE có
MB=MC
góc BMA=góc CME
MA=ME
=>ΔMBA=ΔMCE
b: AC>AB=CE
c: góc BAM=góc ECA>góc MAC
d: Xét tứ giác ABEC có
AB//EC
AB=EC
=>ABEC là hbh
=>BE//AC và BE=AC