Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMBA và ΔMCE có
MB=MC
góc BMA=góc CME
MA=ME
=>ΔMBA=ΔMCE
b: AC>AB=CE
c: góc BAM=góc ECA>góc MAC
d: Xét tứ giác ABEC có
AB//EC
AB=EC
=>ABEC là hbh
=>BE//AC và BE=AC
a: Xét ΔMBA và ΔMCE có
MB=MC
góc BMA=góc CME
MA=ME
=>ΔMBA=ΔMCE
b: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
=>ABEC là hình bình hành
=>BE//AC
Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK
a) Xét tam giác ABM và tam giác ECM có:
AM =ME (gt)
góc AMB=góc EMC (đối đỉnh)
BM=CM (AM là trung tuyến)
Do đó tam giác ABM = tam giác ECM (c-g-c)
c) Từ tam giác ABM= tam giác ECM
=> góc BAM = góc MEC (cặp góc tương ứng)
a) Xét \(\Delta AMBva\Delta AMC\) có
\(\hept{\begin{cases}AB=AC\left(gt\right)\\chungAM\\\widehat{BAM}=\widehat{MAC}\left(gt\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\left(ĐPCM\right)}\)
b) từ 2 tam giác trên = nhau =>BM=CM
xét tam giác BAM và tam giác CEM có
\(\hept{\begin{cases}BM=CM\left(cmt\right)\\AM=ME\left(gt\right)\\\widehat{BMA}=\widehat{EMC}\left(đoi-đinh\right)\end{cases}}\Rightarrow\Delta AMB=\Delta EMC\left(c-g-c\right)\Rightarrow\widehat{BAM}=\widehat{MEC}\left(ĐPCM\right)\)
c) từ hai góc trên = nhau, mà 2 góc đó ở vị trí so le trong =>AB//CE => AK vuông góc với CE => tam giác ACK vuông tại K
a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: AC>AB
=>AC>CE
c: góc BAM=góc CEA
mà góc CEA>góc CAM
nên góc BAM>góc CAM