1. Thực hiện phép tính: $2 + \sqrt9$.
2. Rút gọn biểu thức $B = \left(\dfrac1{\sqrt x+2} - \dfrac1{\sqrt x+7}\right) : \dfrac5{\sqrt x+7}$ với $x \ge 0$.
3. Giải hệ phương trình $\left\{ \begin{aligned} & x + 2y = 4\\ & x - 2y = 0 \end{aligned}\right.$.
sao khó vậy,mình học lớp 9 mà tính mãi chẳng ra đáp án bài này từ lâu rùi
Bài 1 :
\(2+\sqrt{9}=2+3=5\)
Bài 2 :
Với \(x\ge0\)
\(B=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}+7}\right):\frac{5}{\sqrt{x}+7}\)
\(=\frac{\sqrt{x}+7-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+7\right)}:\frac{5}{\sqrt{x}+7}\)
\(=\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+7\right)}.\frac{\sqrt{x}+7}{5}=\frac{1}{\sqrt{x}+2}\)
Bài 3 :
\(\hept{\begin{cases}x+2y=4\left(1\right)\\x-2y=0\left(2\right)\end{cases}}\)Lấy (1) - (2) ta được :
\(4y=4\Leftrightarrow y=1\)
Thay y = 1 vào (1) ta được : \(x+2=4\Leftrightarrow x=2\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)