K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

A B C M O I x

Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ ^CAx=^OAB. Trên Ax lấy điểm I sao cho AO=AI

Nối I với O và C.

Xét \(\Delta\)AMB và \(\Delta\)AMC:

AB=AC

AM chung            => ^MAB < ^MAC hay ^OAB < ^OAC

MB<MC

Mà ^OAB=^IAC => ^IAC < ^OAC

Xét \(\Delta\)AIC và \(\Delta\)AOC:

Cạnh AC chung

^IAC < ^OAC               => IC < OC

AI=AO

Xét \(\Delta\)OCI có: IC < OC => ^OIC > ^IOC (1)

Ta có: Tam giác OAI: AO=AI => \(\Delta\)OAI cân tại A => ^AIO=^AOI  (2)

Từ (1) và (2) => ^OIC+^AIO > ^IOC+^AOI => ^AIC > ^AOC (3)

Sau đó c/m \(\Delta\)AOB=\(\Delta\)AIC (c.g,c) => ^AIC=^AOB (4)

Từ (3) và (4) => ^AOB > ^AOC (đpcm).

24 tháng 2 2020

cuhevhuvhuvwvvfrbuvhfevhvhwreuv(hhhuvfuhevhhfuevhheuwevhehuhfuhhuueuhhfehvfhfhuwehhuuhvweihhhfehrihffreihfhreufhrefhuhefwfhheffuhewfuhibfewihubfefevubfềvuheb&bvefhbuveufded

21 tháng 5 2018

A B C O M

21 tháng 5 2018

vẽ tam giác đều BCM ( M và A cùng thuộc 1 nửa mặt phẳng bờ BC )

CM được tam giác COA cân tại C

\(\widehat{ACO}=45^o-15^o=30^o\)

\(\widehat{CAO}=\left(180^o-30^o\right):2=75^o\)

\(\widehat{BAO}=90^o-75^o=15^o\)\(\widehat{ABO}=45^o-30^o=15^o\)

Vậy \(\widehat{BAO}=\widehat{ABO}\)suy ra : \(\Delta AOB\)cân tại O

Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK

Xét \(\Delta AMN\)và \(\Delta KMB\)\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)

\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)

\(\Rightarrow AN=BK=AM\)

mà \(AB>AM\Rightarrow AB>BK\)

\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)

\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)

8 tháng 2 2020

A B C M N D

Trên tia đồi  của tia MA lấy điểm D sao cho: MA=MD

Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)

mặt khác:

\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)

9 tháng 4 2020

Xin lỗi bạn nha ! Vì lỗi nên mình không vẽ được hình cho bạn ,có j bạn tự vẽ nha !!! 

Bài giải 

a) AB là tiếp tuyến tại A của ( C) 

=> \(\widehat{BAF}=\widehat{AEF}\)

Xét \(\Delta ABF\)và \(\Delta EBA\)có : 

\(\hept{\begin{cases}\widehat{ABE}chung\\\widehat{BAF}=\widehat{BEA}\end{cases}\Rightarrow\Delta ABF}\infty\Delta EBA\left(g-g\right)\)

\(\Rightarrow\frac{AB}{BE}=\frac{BF}{AB}\Rightarrow AB^2=BE.BF\)

Xét \(\Delta ABC\) vuông tại A có đường cao AH . 

=> AB2 =BH . BC 

=> BH . BC = BE . BF ( =AB2 ) 

Xét \(\Delta BHF\)và \(\Delta BEC\)có : 

\(\frac{BH}{BE}=\frac{BF}{BC}\)

\(\widehat{CBE}\)chung 

=> \(\Delta BHF\infty\Delta BEC\left(c-g-c\right)\)

=> \(\widehat{BHF}=\widehat{BEC}\)

*) \(\widehat{BHF}+\widehat{FHC}=\widehat{BEC}+\widehat{FHC}\)

\(\Leftrightarrow\widehat{FEC}+\widehat{FHC}=\widehat{BHC}=180^O\)

=> EFHC là tứ giác nội tiếp ( có tổng 2 góc đối =180 o 

b) EFHC là tứ giác nội tiếp 

=> \(\widehat{EHC}=\widehat{EFC}\)( cùng chắn góc EC ) 

   \(\widehat{FEC}=\widehat{BHF}\)( c/ m cân A ) 

Mà \(\widehat{FEC}=\widehat{EFC}\)\(\Delta ECF\)cân ở C ) 

=> \(\widehat{EHC}=\widehat{BHF}\)

=> 90O \(-\widehat{EHC}=90^O-\widehat{BHF}\)

<=> \(\widehat{EHD}=\widehat{FHD}\)

=> HD là phân giác góc EHF

9 tháng 4 2020

Bạn giải câu c dùm mình được không?