K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

Xin lỗi bạn nha ! Vì lỗi nên mình không vẽ được hình cho bạn ,có j bạn tự vẽ nha !!! 

Bài giải 

a) AB là tiếp tuyến tại A của ( C) 

=> \(\widehat{BAF}=\widehat{AEF}\)

Xét \(\Delta ABF\)và \(\Delta EBA\)có : 

\(\hept{\begin{cases}\widehat{ABE}chung\\\widehat{BAF}=\widehat{BEA}\end{cases}\Rightarrow\Delta ABF}\infty\Delta EBA\left(g-g\right)\)

\(\Rightarrow\frac{AB}{BE}=\frac{BF}{AB}\Rightarrow AB^2=BE.BF\)

Xét \(\Delta ABC\) vuông tại A có đường cao AH . 

=> AB2 =BH . BC 

=> BH . BC = BE . BF ( =AB2 ) 

Xét \(\Delta BHF\)và \(\Delta BEC\)có : 

\(\frac{BH}{BE}=\frac{BF}{BC}\)

\(\widehat{CBE}\)chung 

=> \(\Delta BHF\infty\Delta BEC\left(c-g-c\right)\)

=> \(\widehat{BHF}=\widehat{BEC}\)

*) \(\widehat{BHF}+\widehat{FHC}=\widehat{BEC}+\widehat{FHC}\)

\(\Leftrightarrow\widehat{FEC}+\widehat{FHC}=\widehat{BHC}=180^O\)

=> EFHC là tứ giác nội tiếp ( có tổng 2 góc đối =180 o 

b) EFHC là tứ giác nội tiếp 

=> \(\widehat{EHC}=\widehat{EFC}\)( cùng chắn góc EC ) 

   \(\widehat{FEC}=\widehat{BHF}\)( c/ m cân A ) 

Mà \(\widehat{FEC}=\widehat{EFC}\)\(\Delta ECF\)cân ở C ) 

=> \(\widehat{EHC}=\widehat{BHF}\)

=> 90O \(-\widehat{EHC}=90^O-\widehat{BHF}\)

<=> \(\widehat{EHD}=\widehat{FHD}\)

=> HD là phân giác góc EHF

9 tháng 4 2020

Bạn giải câu c dùm mình được không?

11 tháng 12 2018

a, Tứ giác BDQH nội tiếp vì  B D H ^ + B Q H ^ = 180 0

b, Vì tứ giác ACHQ nội tiếp =>  C A H ^ = C Q H ^

Vì tứ giác ACDF nội tiếp  =>  C A D ^ = C F D ^

Từ đó có  C Q H ^ = C F D ^  mà 2 góc ở vị trí đồng vị => DF//HQ

c, Ta có  H Q D ^ = H B D ^  (câu a)

H B D ^ = C A D ^ = 1 2 s đ C D ⏜

C A D ^ = C Q H ^  (ACHQ cũng nội tiếp)

=>  H Q D ^ = H Q C ^ => QH là phân giác  C Q D ^

Mặt khác chứng minh được CH là phân giác góc  Q C D ^

Trong tam giác QCD có H là giao của ba đường phân giác nên H là tâm đường tròn nội tiếp => H cách đều 3 cạnh CD, CQ, DQ

d, Vì CMFN là hình chữ nhật nên MN và CF cắt nhau tại trung điểm của mỗi đường.

Trong tam giác FCD có MN//CD và MN đi qua trung điểm CF nên MN đi qua trung điểm DF

Mặt khác AB đi qua trung điểm của DF nên 3 đường thẳng MN, AB, DF đồng quy

20 tháng 2 2022

bạn giải thích lại giúp mình câu b được không ạ? tại mình không hiểu câu đó lắm, mình cảm ơn!

Bài 1: 

a: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

c: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

Xét tứ giác BICD có 

BI//CD(cùng vuông góc với AC)

CI//BD(cùng vuông góc với AB)

Do đó: BICD là hình bình hành

Bài 2:

a: Xét (O) có 

MN=EF

OH là khoảng cách từ O đến dây MN

OK là khoảng cách từ O đến dây EF
Do đó: OH=OK

Xét ΔAHO vuông tại H và ΔAKO vuông tại K có

AO chung

OH=OK

Do đó: ΔAHO=ΔAKO

Suy ra: AH=AK

b: Xét ΔOHM vuông tại H và ΔOKE vuông tại K có 

OM=OE

OH=OK

Do đó: ΔOHM=ΔOKE

Suy ra: HM=KE

Ta có: AM+MH=AH

AE+EK=AK

mà AH=AK

và HM=KE

nên AM=AE

31 tháng 1 2019

a, Chứng minh được  H C B ^ = H K B ^ = 90 0

b,  A C K ^ = H B K ^  (CBKH nội tiếp)

Lại có:  A C M ^ = H B K ^ = 1 2 s đ A M ⏜

=>  A C M ^ = A C K ^

c, Chứng minh được:

DMCA = DECB (c.g.c) => MC = CE

Ta có:  C M B ^ = C A B ^ = 1 2 s đ C B ⏜ = 45 0

=> DMCE vuông cân tại C

d, Gọi  P B ∩ H K = I

Chứng minh được DHKB đồng dạng với DAMB (g.g)

=>  H K K B = M A M B = A P R => H K = A P . B K R

Mặt khác: ∆BIK:∆BPA(g.g) => (ĐPCM)

14 tháng 7 2020

a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.

Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)

Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)

Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)

Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)

b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)

Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\)\(\Delta O_2OO_1\)vuông cân tại \(O_2\)

Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)

.Vậy diện tích \(\Delta O_2OO_1\)  là\(\frac{5R^2}{8}\)

3 tháng 3 2020

O A B C M K H E d P F I

1) Dễ thấy \(\widehat{HCB}=\widehat{ACB}=90^o\)

tứ giác CBKH có \(\widehat{HKB}=\widehat{HCB}=90^o\)nên là tứ giác nội tiếp

\(\Rightarrow\widehat{HCK}=\widehat{HBK}\)( 1 )

Mà \(\widehat{ACM}=\widehat{ABM}=\frac{1}{2}sđ\widebat{AM}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{ACM}=\widehat{ACK}\)

2) Xét \(\Delta AMC\)và \(\Delta BEC\)có :

AM = BE ; AC = BC ; \(\widehat{MAC}=\widehat{CBE}=\frac{1}{2}sđ\widebat{MC}\)

\(\Rightarrow\Delta AMC=\Delta BEC\)( c.g.c )

\(\Rightarrow MC=EC\)

Ta có : \(\widehat{CMB}=\frac{1}{2}sđ\widebat{BC}=45^o\)

Suy ra \(\Delta ECM\)vuông cân tại C

3) Ta có : \(\frac{AP.MB}{AM}=R=OB\Rightarrow\frac{AP}{MA}=\frac{OB}{MB}\)

Xét \(\Delta APM\)và \(\Delta OBM\), ta có :

\(\frac{AP}{MA}=\frac{OB}{MB}\)\(\widehat{PAM}=\widehat{MBO}=\frac{1}{2}sđ\widebat{AM}\)

\(\Rightarrow\Delta APM\approx\Delta BOM\left(c.g.c\right)\)

\(\Rightarrow\Delta APM\)cân tại P ( vì \(\Delta BOM\)cân tại O )

\(\Rightarrow PA=PM\)

Gọi giao điểm của BM và ( d ) là F ; giao điểm của BP với HK là I

Xét tam giác vuông AMF có PA = PM nên PA = PM = PF

Theo định lí Ta-let, ta có :

\(\frac{HI}{FP}=\frac{BI}{BP}=\frac{KI}{AP}\Rightarrow HI=KI\)

vì vậy PB đi qua trung điểm của HK