b) Cho đa thức f(x) = x2 - 5x - 35. Chứng tỏ x = -5 là nghiệm của đa thức f(x) và
x = 5 không là nghiệm của đa thức f(x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
a) D(x) = 2x2 + 3x - 35
D(-5) = 2 . ( -5 )2 + 3 . ( -5 ) -35 = 2 . 25 - 15 - 35 = 50 - 15 - 35 = 0
=> x = -5 là nghiệm của D(x)
b) F(x) = -5x - 6
F(x) = 0 <=> -5x - 6 = 0
<=> -5x = 6
<=> x = -6/5
c) E - ( 2x2 - 5xy2 + 3y3 ) = 5x2 + 6xy2 - 8y3
E = 5x2 + 6xy2 - 8y3 + 2x2 - 5xy2 + 3y3
E = 7x2 + xy2 -5y3
a, \(D\left(x\right)=2x^2+3x-35\)
\(D\left(-5\right)=2\left(-5\right)^2+3.\left(-5\right)-35=2.25-15-35=0\)
Vậy x = -5 là nghiệm của đa thức
b, Sửa đề \(F\left(x\right)=-5x-6=0\)
\(x=-\frac{6}{5}\)
c, \(E-\left(2x^2-5xy^2+3y^3\right)=5x^2+6xy^2-8y^3\)
\(E-2x^2+5xy^2-3y^3=5x^2+6xy^2-8y^3\)
\(E=5x^2+6xy^2-8y^3+2x^2-5xy^2+3y^3\)
\(E=7x^2+xy^2-5y^3\)
f(-1)=1+4-5=0
f(5)=25-20-5=0
Do đó: x=-1; x=5 là các nghiệm của f(x)
Ta có \(f\left(-1\right)=1+4-5=0\)
Vậy x = -1 là nghiệm đa thức trên
\(f\left(5\right)=25-20-5=0\)
Vậy x = 5 là nghiệm đa thức trên
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Đặt \(f\left(x\right)=0\)
\(\Leftrightarrow x^2-4x-5=0\)
\(\Leftrightarrow x^2+x-5x-5=0\)
\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)
\(\rightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
--> hai nghiệm \(x=-1;x=5\) là hai nghiệm của đa thức \(f\left(x\right)\)
đặt f(x) = 0
\(\Leftrightarrow x^2-4x-5=0\\ \Leftrightarrow x^2+x-5x-5=0\\ \Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy x = 5 và x = -1 là 2 nghiệm của f(x)
sai đề rồi bn
Cái nào cũng không phải là nghiệm hết ạ;-;