1 stn gồm 1 c/s 1, 2 c/s 2, 3 c/s 3, 4 c/s 4 có thể là số chính phương không? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(S=1+3+3^2+3^3+...+3^{98}\)
\(3S=3+3^2+3^3+3^4+...+3^{99}\)
\(3S-S=3^{99}-1\)
Hay \(2S=3^{99}-1\)
\(\Rightarrow S=\frac{3^{99}-1}{2}\)
b) Ta có: \(2S=3^{5x-1}-1\)
\(\Rightarrow3^{99}-1=3^{5x-1}-1\)
\(\Rightarrow3^{99}=3^{5x-1}\)
\(\Rightarrow5x-1=99\)
\(\Rightarrow5x=100\)
\(\Rightarrow x=20\)
Hok tốt nha^^
nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
=> S là số chính phương
S = 3^0 + 3^2 + 3^4 + 3^6 + ... + 3^2002
Ta thấy tổng S gồm ( 2002 - 0 ) : 2 + 1 = 1002 ( số hạng ), mỗi số hạng đều chia 4 dư 1 => S chia 4 dư 1002 hay S chia 4 dư 2
Mà số chính phương chia 4 chỉ có thể dư 0 hoặc 1 nên S không là số chính phương
Vậy S không là số chính phương
2) 1/a + 1/b + 1/c = \(\frac{bc+ac+ab}{abc}\)
Nếu abc = 5 => a = 0; c = 1 và b = 4
Nếu abc = 10 hoặc 15 hoặc 20 thì .....
Tìm bộ ba số tự nhiên khác không sao cho:
a+b+c=0
và 1/a+1/b+1/c=2