Chứng minh BĐT sau luôn đúng: x > 0
x + \(\dfrac{4}{x}\) \(\ge\) 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)
\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)
a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Áp dụng bđt Cô-si chi 2 số không âm, ta có:\(\dfrac{\left(a+b\right)^2}{2}+\dfrac{a+b}{4}=\dfrac{a+b}{2}\left(a+b+\dfrac{1}{2}\right)\ge\sqrt{ab}\left(a+b+\dfrac{1}{2}\right)\)
Xét \(\sqrt{ab}\left(a+b+\dfrac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\)
\(\Leftrightarrow\sqrt{ab}\left(a+b+\dfrac{1}{2}\right)\ge\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Leftrightarrow a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow a-\sqrt{a}+\dfrac{1}{4}+b-\sqrt{b}+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\dfrac{1}{2}\right)^2+\left(\sqrt{b}-\dfrac{1}{2}\right)^2\ge0\) (luôn đúng)
\(\Rightarrow\sqrt{ab}\left(a+b+\dfrac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\)
Mà \(\dfrac{\left(a+b\right)^2}{2}+\dfrac{a+b}{4}\ge\sqrt{ab}\left(a+b+\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{2}+\dfrac{a+b}{4}\ge a\sqrt{b}+b\sqrt{a}\)
bài này chỉ ở dạng trung trung thôi, có 2 cái link 1 tổng quát 2 hiệu quát ko biết giúp j dc ko
-tổng quát: Học tại nhà - Toán - Toán hay hay
-hiệu quát: Học tại nhà - Toán - (Bài Toán Thách Thức )
BĐT dạng k hay n là t ngu lắm ko giúp dc :v
\(\dfrac{x^2+4}{4}\ge x\)
\(\Leftrightarrow\dfrac{4\left(x^2+4\right)}{4}\ge4x\)
\(\Leftrightarrow x^2+4\ge4x\)
\(\Leftrightarrow x^2-4x+4\ge0\)
\(\Leftrightarrow\left(x-2\right)^2\ge0\) (Luôn đúng)
Vậy đẳng thức ban đầu được chứng minh.
\(\dfrac{x^2+4}{4}\ge x\)
\(\Leftrightarrow\dfrac{x^2+4}{4}\ge\dfrac{4x}{4}\)
\(\Leftrightarrow x^2+4+4x\ge0\)
\(\Leftrightarrow\left(x+2\right)^2\ge0\) (luôn đúng)
:\(x^4-4x+3=\left(x^4-x^3\right)+\left(x^3-x^2\right)+\left(x^2-x\right)-\left(3x-3\right)\)
\(=x^3\left(x-1\right)+x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x^3+x^2+x-3\right)\left(x-1\right)\)
\(=\left(x^2+2x+3\right)\left(x-1\right)^2\)(cái này bạn phân tích vế \(x^3+x^2+x-3=\left(x^2+2x+3\right)\left(x-1\right)\)là được
Ta có:\(\left(x-1\right)^2\ge0\)(luôn đúng).Dấu"="<=>x=1(1)
lại có \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2>0\)(2)
nhân vế (1) và (2) \(\Rightarrowđpcm\)
Dấu"="<=>x=1
Xong rồi đấy,bạn k cho mình nhé
Áp dụng BĐT Cô si ta có: x > 0 => x + \(\dfrac{4}{x}\) \(\ge\) 2 . \(\sqrt{\dfrac{4x}{x}}\)
<=> x + \(\dfrac{4}{x}\) \(\ge\) 4
Ta có: \(x+\dfrac{4}{x}\ge4\)
\(\Leftrightarrow\dfrac{x^2+4}{x}-\dfrac{4x}{x}\ge0\)
\(\Leftrightarrow x^2-4x+4\ge0\forall x\)
\(\Leftrightarrow\left(x-2\right)^2\ge0\forall x>0\)(luôn đúng)