Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)
\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)
a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
với mọi x,y ta luôn có:
\(x^2+y^2\ge2xy\left(1\right)\)
cộng cả 2 vế bđt cho \(x^2+y^2\)
\(\left(1\right)\Leftrightarrow x^2+y^2+x^2+y^2\ge x^2+y^2+2xy\)
hay \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow\)đpcm
2(x2 + y2) \(\ge\) (x + y)2
\(\Leftrightarrow\) 2(x2 + y2) - (x + y)2 \(\ge\) 0 (Trừ cả hai vế với (x + y)2)
\(\Leftrightarrow\) 2x2 + 2y2 - x2 - 2xy - y2 \(\ge\) 0
\(\Leftrightarrow\) x2 - 2xy + y2 \(\ge\) 0
\(\Leftrightarrow\) (x - y)2 \(\ge\) 0
Vì (x - y)2 \(\ge\) 0 nên 2(x2 + y2) \(\ge\) (x + y)2
Chúc bn học tốt!!
Ô hay, em vừa tìm ra một cách chứng minh cho BĐT (2) nè:
Do x, y, z có vai trò hoán vị vòng quanh, không mất tính tổng quát giả sử \(y=min\left\{x,y,z\right\}\)
\(VT-VP=\frac{27y\left(y-z\right)^2+\left(4x+16z-11y\right)\left(y+z-2x\right)^2}{4}\ge0\)
Cái này gọi là mò:D
Giả sử bài toán đã có đầu đủ giả thuyết cần thiết rồi. (Thiếu giả thuyết nhá bác).
\(x^3+y^3+z^3\ge\left(\dfrac{x+y}{2}\right)^3+\left(\dfrac{y+z}{2}\right)^3+\left(\dfrac{z+x}{2}\right)^3\)
\(\Leftrightarrow6\left(x^3+y^3+z^3\right)-3\left(xy^2+xz^3+yx^2+yz^2+zx^2+zy^2\right)\ge0\)
Ta có bổ đề:
\(x^3+x^3+y^3\ge3yx^2\)
Thế vô thì bài toán được chứng minh.
1 cách giải khác:
\(bdt\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge\left(x+y\right)^3+\left(y+z\right)^3+\left(x+z\right)^3\)
\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge2\left(x^3+y^3+z^3\right)+xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow6\left(x^3+y^3+z^3\right)\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(y+z\right)\left(y^2-yz+z^2\right)+3\left(x+z\right)\left(x^2-xz+z^2\right)\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow3\left(x+y\right)\left(x-y\right)^2+3\left(y+z\right)\left(y-z\right)^2+3\left(x+z\right)\left(x-z\right)^2=0\)
\("="\Leftrightarrow x=y=z\)