K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

23 tháng 5 2020

với mọi x,y ta luôn có:
\(x^2+y^2\ge2xy\left(1\right)\)

cộng cả 2 vế bđt cho \(x^2+y^2\)

\(\left(1\right)\Leftrightarrow x^2+y^2+x^2+y^2\ge x^2+y^2+2xy\)

hay \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Rightarrow\)đpcm

23 tháng 5 2020

2(x2 + y2) \(\ge\) (x + y)2

\(\Leftrightarrow\) 2(x2 + y2) - (x + y)2 \(\ge\) 0 (Trừ cả hai vế với (x + y)2)

\(\Leftrightarrow\) 2x2 + 2y2 - x2 - 2xy - y2 \(\ge\) 0

\(\Leftrightarrow\) x2 - 2xy + y2 \(\ge\) 0

\(\Leftrightarrow\) (x - y)2 \(\ge\) 0

Vì (x - y)2 \(\ge\) 0 nên 2(x2 + y2) \(\ge\) (x + y)2

Chúc bn học tốt!!

16 tháng 11 2019

Ô hay, em vừa tìm ra một cách chứng minh cho BĐT (2) nè:

Do x, y, z có vai trò hoán vị vòng quanh, không mất tính tổng quát giả sử \(y=min\left\{x,y,z\right\}\)

\(VT-VP=\frac{27y\left(y-z\right)^2+\left(4x+16z-11y\right)\left(y+z-2x\right)^2}{4}\ge0\)

Cái này gọi là mò:D

24 tháng 12 2017
ghhjkkkk
17 tháng 7 2018

Giả sử bài toán đã có đầu đủ giả thuyết cần thiết rồi. (Thiếu giả thuyết nhá bác).

\(x^3+y^3+z^3\ge\left(\dfrac{x+y}{2}\right)^3+\left(\dfrac{y+z}{2}\right)^3+\left(\dfrac{z+x}{2}\right)^3\)

\(\Leftrightarrow6\left(x^3+y^3+z^3\right)-3\left(xy^2+xz^3+yx^2+yz^2+zx^2+zy^2\right)\ge0\)

Ta có bổ đề:

\(x^3+x^3+y^3\ge3yx^2\)

Thế vô thì bài toán được chứng minh.

17 tháng 7 2018

1 cách giải khác:

\(bdt\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge\left(x+y\right)^3+\left(y+z\right)^3+\left(x+z\right)^3\)

\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge2\left(x^3+y^3+z^3\right)+xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow6\left(x^3+y^3+z^3\right)\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(y+z\right)\left(y^2-yz+z^2\right)+3\left(x+z\right)\left(x^2-xz+z^2\right)\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow3\left(x+y\right)\left(x-y\right)^2+3\left(y+z\right)\left(y-z\right)^2+3\left(x+z\right)\left(x-z\right)^2=0\)

\("="\Leftrightarrow x=y=z\)