K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:

$x^2+2y^2+2xy-6x-8y+10=0$

$\Leftrightarrow (x^2+2xy+y^2)-6x-8y+y^2+10=0$

$\Leftrightarrow (x+y)^2-6(x+y)+9+(y^2-2y+1)=0$

$\Leftrightarrow (x+y-3)^2+(y-1)^2=0$

Do $(x+y-3)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì $(x+y-3)^2=(y-1)^2=0$
$\Leftrightarrow y=1; x=2$

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

9 tháng 8 2017

số cặp x,y là : 

N :2 = ??

đ/s:.......

số cặp x,y,z là :

N* :3=?

9 tháng 8 2017

sai rồi

\(x-y=xy-1\)

\(\Rightarrow x-y-xy+1=0\)

\(\Rightarrow x\left(1-y\right)+\left(1-y\right)=0\)

\(\Rightarrow\left(x+1\right)\left(1-y\right)=0\)

+) Với $x=-1$ thì ta có mọi $y$ thỏa mãn

+) Với $y=1$ thì ta có mọi $x$ thỏa mãn.

10 tháng 7 2021

Em cảm ơn!

6 tháng 2 2023

[x-1]/7=[-3]/[y+3]`

`=>(x-1)(y+3)=-21=-21.1=-1.21=-3.7=-7.3`

`@{(x-1=-21),(y+3=1):}=>{(x=-20),(y=-2):}`

`@{(x-1=-1),(y+3=21):}=>{(x=0),(y=18):}`

`@{(x-1=-3),(y+3=7):}=>{(x=-2),(y=4):}`

`@{(x-1=-7),(y+3=3):}=>{(x=-6),(y=0):}`

29 tháng 7 2018

xy - 3x - y = 0 
<=> x(y - 3) - y + 3 = 3 
<=> (x - 1)(y - 3) = 3 (*) 

Vì 3 là số nguyên tố nên chỉ có ước là 1 và 3 
từ (*) ta có các trường hợp sau: 

*TH1: 
{x - 1 = -1 và {y - 3 = -3 => x = 0 và y = 0 

*TH2: 
{x - 1 = 1 và {y - 3 = 3 => x = 2 và y = 6 
vậy (x,y) thuộc vào (0,0) và (2,6)

29 tháng 7 2018

đưa x ra ngoài ta có :y( x-1) - 3x=0 nên: y( x-1) - 3x-3=-3

suy ra : (x-1).(y-3)=-3

từ đó tìm được x,y

các bạn tìm giúp mình

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)