cho A= 7+ 7^2+ 7^3+...+7^2016 chứng minh A chia hết cho 8,A chia hết cho 57
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7+7^2+7^3+...+7^{2016}\)
\(A=\left(7+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{2014}+7^{2015}+7^{2016}\right)\)
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2014}\left(1+7+7^2\right)\)
\(A=7.57+7^4.57+...+7^{2014}.57\)
\(A=\left(7+7^4+...+7^{2014}\right).57⋮57\) ( đpcm )
Ta có :
\(A=7\left(1+7+7^2\right)+.....+7^{2014}\left(1+7+7^2\right)\)
\(\Rightarrow A=7.57+....+7^{2014}.57\)
\(\Rightarrow A=57.\left(7+....+7^{2014}\right)\)
=> A chia hêt cho 57
A = 7 + 72 + 73 + .... + 72016 có (2016 - 1) : 1 + 1 = 2016 số hạng
A = (7 + 72 + 73) + ... + (72014 + 72015 + 72016)
A = 7 . (1 + 7 + 72) + .... + 72014 . (1 + 7 + 72)
A = 7 . (1 + 7 + 49) + .... + 72014 . (1 + 7+ 49)
A = 7 . 57 + ... + 72014 . 57
A = 57 . (7 + ... + 72014) chia hết cho 57
=> A chia hết cho 57 (ĐPCM)
Ủng hộ mk nha !!! ^_^
A = 7 + 72 + 73 +.....+ 72016
A = (7 + 72 + 73) + (74 + 75 + 76) +....+ (72014 + 72015 + 72016)
A = 7(1+7+72) + 74(1+7+72) +....+ 72014(1+7+72)
A = 7.57 + 74.57 +.....+ 72014.57
A = (7 + 74 +....+ 72014).57 chia hết cho 57 (Đpcm)
a. => 7A=7.(7+72+73+...+72016)
7A=72+73+74+...+72017
=> 7A-A=(72+73+74+...+72017)-(7+72+73+...+72016)
=> 6A=72017-7
=> A=\(\frac{7^{2017}-7}{6}\).
b. A=(7+72)+(73+74)+...+(72015+72016)
=7.(1+7)+73.(1+7)+...+72015.(1+7)
=7.8+73.8+...+72015.8
=8.(7+73+...+72015) chia hết cho 8
=> A chia hết cho 8.
c. A=(7+72+73)+(74+75+76)+...+(72014+72015+72016)
=7.(1+7+72)+74.(1+7+72)+...+72014.(1+7+72)
=7.57+74.57+...+72014.57
=57.(7+74+...+72014) chia hết cho 57
=> A chia hết cho 57.
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+7^4+...+7^{118}\right)⋮57\)
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{118}\right)⋮57\)
\(A=7\left(1+7+7^2\right)+...+7^{88}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{88}\right)⋮57\)
\(=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{118}\right)⋮57\)
\(A=7+7^2+7^3+...+7^{119}+7^{120}\)
\(\Rightarrow7A=7^2+7^3+7^4+...+7^{120}+7^{121}\)
\(\Rightarrow7A-A=\left(7^2+7^3+...+7^{120}+7^{121}\right)-\left(7+7^2+...+7^{119}+7^{120}\right)\)
\(\Rightarrow6A=7^2+7^3+...+7^{120}+7^{121}-7-7^2-...-7^{119}-7^{120}\)
\(\Rightarrow6A=7^{121}-7\)
\(\Rightarrow A=\dfrac{7^{121}-7}{6}\)
A=7+72+73+...+72016
=(7+72)+(73+74)+...+(72015+72016)
=7.(1+7)+73.(1+8)+...+72015.(1+7)
=7.8+73.8+...+72015.8
=8.(7+73+...+72015) chia hết cho 8 (đpcm)
A=7+72+73+...+72016
=(7+72+73)+...+(72014+72015+72016)
=7.(1+7+72)+...+72014.(1+7+72)
=7.57+...+72014.57
=57.(7+...+72014) chia hết cho 57 (đpcm)