K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

A B C D I K E F

a/ Dễ dàng chứng minh bằng cách áp dụng hệ thức về cạnh trong các tam giác vuông ABD và ACD : 

\(AE.AB=AF.AC=AD^2\)

b/ Bạn tham khảo ở đây nhé : http://olm.vn/hoi-dap/question/633787.html

c/ Áp dụng tứ giác nội tiếp để giải (liên quan đến góc ngoài của tứ giác nội tiếp)

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2

22 tháng 9 2016

2.  A C D B

Từ B kẻ đường phân giác BD ( D thuộc AC)
Ta có : \(tan\left(\frac{\widehat{B}}{2}\right)=tan\widehat{ABD}=\frac{AD}{AB}\)

Mà theo tính chất đường phân giác : \(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{AC}{AB+BC}\)

\(\Rightarrow tan\left(\frac{\widehat{B}}{2}\right)=\frac{AC}{AB+BC}\) (đpcm)

22 tháng 9 2016

1/ Bạn tham khảo ở đây :)

http://olm.vn/hoi-dap/question/633787.html