K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

A B C D I K E F

a/ Dễ dàng chứng minh bằng cách áp dụng hệ thức về cạnh trong các tam giác vuông ABD và ACD : 

\(AE.AB=AF.AC=AD^2\)

b/ Bạn tham khảo ở đây nhé : http://olm.vn/hoi-dap/question/633787.html

c/ Áp dụng tứ giác nội tiếp để giải (liên quan đến góc ngoài của tứ giác nội tiếp)

28 tháng 5 2021

a) Ta có A, E, F, K, H cùng thuộc đường tròn đường kính AH.

b) Ta có \(\widehat{AMN}=90^o-\widehat{OAB}=90^o-\dfrac{180^o-\widehat{AOB}}{2}=\dfrac{\widehat{AOB}}{2}=\widehat{ACB}\).

Suy ra tứ giác BMNC nội tiếp và \(\Delta SMB\sim\Delta SCN\left(g.g\right)\) nên \(SM.SN=SB.SC\).

c) Ta có \(\widehat{QCB}=\widehat{QAB}=\widehat{HCB};\widehat{QBC}=\widehat{HBC}\) nên Q, H đối xứng với nhau qua BC.

Mà S thuộc BC nên SH = SQ.

Ta lại có \(\widehat{SHB}=\widehat{BHF}-\widehat{MHF}=\widehat{BAC}-\left(90^o-\widehat{AMH}\right)=\widehat{BAC}+\widehat{ACB}-90^o=90^o-\widehat{ABC}=\widehat{SCH}\Rightarrow\Delta SHB\sim\Delta SCH\left(g.g\right)\Rightarrow SQ^2=SH^2=SB.SC\).

d) I là điểm nào vậy bạn?

29 tháng 5 2021

I là trđ AH...quên tí:)))

 

15 tháng 8 2019

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Chứng minh các tứ giác ABHF và BMFO nội tiếp.

- Từ giả thiết suy ra: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

=> H và F thuộc đường tròn đường kính AB (quỹ tích cung chứa góc)

Vậy tứ giác ABHF nội tiếp đường tròn đường kính AB

- Gọi M là trung điểm của BC (gt), suy ra: OM ⊥ BC

Khi đó: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Nên M, F thuộc đường tròn đường kính OB(quỹ tích cung chứa góc).

Vậy tứ giác BMOF nội tiếp đường tròn đường kính OB

* Chứng minh HE // BD.

Dễ chứng minh tứ giác ACEH nội tiếp đường tròn đường kính AC.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Và chúng ở vị trí so le trong suy ra: HE // BD

a)

Xét (O) có

M là trung điểm của dây BC(gt)

nên OM\(\perp\)BC(Định lí đường kính vuông góc với dây)

Xét tứ giác BMOF có 

\(\widehat{BFO}+\widehat{BMO}=180^0\left(90^0+90^0=180^0\right)\)

nên BMOF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

20 tháng 12 2022

a: BC=10cm

=>AH=6*8/10=4,8cm

b: ΔAHB vuông tại H

mà HM là trung tuyến

nên HM=AM

Xét ΔOAM và ΔOHM có

OA=OH

MA=MH

OM chung

Do đó: ΔOAM=ΔOHM

=>góc OHM=90 độ

=>MH là tiếp tuyến của (O)