x/8=y/-7=z/21 va -3.x+10y-2z=236
nhanh nha minh cho 3 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\hept{\begin{cases}\frac{x}{8}=\frac{y}{7}=\frac{z}{21}\\-3x+10y-2z=236\end{cases}}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{8}=\frac{y}{7}=\frac{z}{21}=\frac{-3x+10y-2z}{-3.8+10.7-2.21}=\frac{236}{4}=29\)
vậy ta tìm được \(\hept{\begin{cases}x=8.29=232\\y=7.29=203\\z=21.29=609\end{cases}}\)
a) x/2 = y/3 = z/4 va x + y + z =18.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2
=> x= 2*2 =4
y= 2* 3=6
z=2*4= 8
Vậy x=4; y=6; z=8.
b) x/5 = y/-6 = z/7 va x + y - z =32.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4
=> x= -4 *5 = -20
y= -4* (-6)= 24
z= -4 * 7 = -28
Vậy x=-20 ; y= 24; x= -28.
c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.
x/5 = 2x/10
y/3 = 3y/9
z/2 = 4z/8
Áp dụng tính chất của dãy tỉ số bằng nhau:
2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2
=> x= 2*5 = 10
y= 2*3 =6
x= 2*2 =4
Vậy x= 10; y=6; z=4
d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.
x/2 =3x/6
y/3 = 2y/6
z/6 = 2z/12
Áp dụng tính chất của dãy tỉ số bằng nhau:
3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2
=> x= 2*2 =4
y= 2*3 =6
z= 2* 6 =12
Vậy x=4; y=6; z=12
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=>\frac{2x}{8}=\frac{y}{3}=\frac{2z}{4}\)
áp dug t/c dãy t/s = nhau ta có:
\(\frac{2x}{8}=\frac{y}{3}=\frac{2z}{4}=\frac{2x+y-2z}{8+3-4}=\frac{21}{7}=3\)
=>x/4=3=>x=12
=>y/3=3=>y=9
=>z/2=3=>z=6
Ta có : \(\frac{x}{4}=\frac{2x}{8};\frac{z}{2}=\frac{2z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{y}{3}=\frac{2z}{4}=\frac{2x+y+2z}{8+3-4}=\frac{21}{7}=3\)
\(\Rightarrow x=12;y=9;z=6\)
\(\text{Cho:}x^2+y^2+z^2=1\text{.Chứng minh rằng:}\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{z+2y}\ge\frac{1}{3}\)
\(\text{Áp dụng BĐT Cosi cho 2 số dương, ta có:}\)
\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)
\(\text{Lại có:}\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\text{Do đó:}\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+x^2\right)\)
\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
\(\text{Dấu "=" xảy ra }\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
cho minh hoi phan bat dang thuc cosi la ban dung cong thuc the nao ak
a) đặt \(\dfrac{3}{7x}=\dfrac{8}{13y}=\dfrac{6}{19z}=k\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7k}\\y=\dfrac{8}{13k}\\z=\dfrac{6}{19k}\end{matrix}\right.\)
Thay vào 2x -y-z=-6, ta được:
\(2\cdot\dfrac{3}{7k}-\dfrac{8}{13k}-\dfrac{6}{19k}=-6\Leftrightarrow\left(\dfrac{6}{7}-\dfrac{8}{13}-\dfrac{6}{19}\right)\cdot\dfrac{1}{k}=-6\Leftrightarrow\dfrac{1}{k}=\dfrac{5187}{64}\Leftrightarrow k=\dfrac{64}{5187}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7k}=\dfrac{2223}{64}\\y=\dfrac{8}{13k}=\dfrac{399}{8}\\z=\dfrac{6}{19k}=\dfrac{819}{32}\end{matrix}\right.\)
Vậy.............
{số vẫn không đẹp mấy nhỉ T_T!!!}
\(\dfrac{3}{7}.x=\dfrac{8}{13}y=\dfrac{6}{19}z\)
\(\Rightarrow\)\(\dfrac{x}{\dfrac{7}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}\Rightarrow.\dfrac{2x}{\dfrac{14}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}\)
AD tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{\dfrac{14}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}=\dfrac{2x-y-z}{\dfrac{14}{3}-\dfrac{13}{8}-\dfrac{19}{6}}=\dfrac{-6}{\dfrac{-3}{24}}=48\)
\(\Rightarrow\)x=112;y=78;z=152
x/8=y/-7=z/21 va -3.x+10y-2z=236
x=12
y=15
z=13