so sánh: 2^100...3^65
điền dấu >,<,=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{100}=\left(2^5\right)^{20}=\left(32\right)^{20}\)
\(3^{65}=\left(3^{3,25}\right)^{20}=\left(\approx35,5\right)^{20}\)
vì \(32^{20}< 35,5^{20}\Rightarrow2^{100}< 3^{65}\)
A=1+1/22 +........+1/1002
=>A<1+1/1*2+1/2*3 +......+1/99*100
=> A< 1+ 1-1/2 +1/2-1/3+......+1/99 -1/100=2-1/100
=>A<2
Bài này giải nhiều rồi. Thôi m trình bày thêm 1 lần nữa vậy. Lần sau tìm câu hỏi tương tự nha b.
Ta có:
\(A=\sqrt{4+\sqrt{4+\sqrt{4....}}}\) vô số dấu căn
\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4....}}}\)
\(\Leftrightarrow A^2-A-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\left(l\right)\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)
Từ đây ta có \(\sqrt{4+\sqrt{4+\sqrt{4....}}}< 3\)
2^100 > 3^65
chắc vậy