3x=4y=2z-x và x+y+z= 60 tìm x,y,z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(3x=2z-x\Rightarrow4x=2z\Rightarrow2x=z\)
\(x+y+z=60\Rightarrow z=60-x-y\Rightarrow2x=60-x-y\Rightarrow3x=60-y\)
\(\Rightarrow4y=60-y\Rightarrow5y=60\Rightarrow y=12\)
\(\Rightarrow4y=3x=12.4=48\Rightarrow x=\frac{48}{3}=16\)
Mà \(2x=z\Rightarrow z=16.2=32\)
Vậy\(x=16;y=12;x=32\)
Ta có :
3x = 4y = 2z => \(\frac{x}{4}=\frac{y}{3}\)và \(\frac{y}{2}=\frac{z}{4}\)=> \(\frac{x}{8}=\frac{y}{6}\)và \(\frac{y}{6}=\frac{z}{12}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{12}\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{8}=\frac{y}{6}=\frac{z}{12}=\frac{x+y+z}{8+6+12}=\frac{60}{24}\)
Suy ra : \(\frac{x}{8}=\frac{60}{24}\Rightarrow x=\frac{60}{24}.8=20\)
\(\frac{y}{6}=\frac{60}{24}\Rightarrow y=\frac{60}{24}.6=15\)
\(\frac{z}{12}=\frac{60}{24}\Rightarrow x=\frac{60}{24}.12=30\)
Vậy : x = 20 ; y = 15 ; z = 20
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x+4y+2z}{3\cdot3+4\cdot4+2\cdot5}=\dfrac{70}{35}=2\)
Do đó: x=6; y=8; z=10
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\text{ và }3x+4y+2z=70\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x+4y+2z}{3.3+4.4+2.5}=\dfrac{70}{35}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.4=8\)
\(z=2.5=10\)
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
a, 3x = 2y = z
<=> \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{2}}=\frac{z}{1}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{2}}=\frac{z}{1}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{2}+1}=\frac{18}{\frac{11}{6}}=\frac{108}{11}\)
\(\Rightarrow\hept{\begin{cases}3x=\frac{108}{11}\\2y=\frac{108}{11}\\z=\frac{108}{11}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{36}{11}\\y=\frac{54}{11}\\z=\frac{108}{11}\end{cases}}\)
b, 6x = 4y = -2z
<=> \(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{-1}{2}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{-1}{2}}=\frac{x-y-z}{\frac{1}{6}-\frac{1}{4}+\frac{1}{2}}=\frac{27}{\frac{5}{12}}=\frac{324}{5}\)
\(\Rightarrow\hept{\begin{cases}6x=\frac{324}{5}\\4y=\frac{324}{5}\\-2z=\frac{324}{5}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{54}{5}\\y=\frac{81}{5}\\z=\frac{-162}{5}\end{cases}}\)
= (3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2
= (12x-8y)/16 = (6z-12x)/9
= (8y-6z)/4
= (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
Ta có \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2x-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}=\dfrac{12x-8y-12x+8y-6z}{29}\)
Do đó:
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\Rightarrow x=4;y=6;z=8\)