Cho x+y+z = 0 và xy+yz+zx= 0. Tính giá trị biểu thức:
\(B=\left(x-1\right)^{2007}+y^{2008}+\left(z+1\right)^{2009}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=0< =>\left(x+y+z\right)^2=0< =>x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
\(< =>x^2+y^2+z^2=0< =>x=y=z=0\)
\(B=\left(-1\right)^{2007}+0+1^{2009}=0\)
x+y+z=0
\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\)( vì xy+yz+zx=0)
Mà \(x^2+y^2+z^2\ge0\forall x,y,z\Rightarrow x=y=z=0\)
\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)
= -1+0+1=0
Vậy B=0
Có xy + yz + zx = 1
=> 1 + x2 = x2 + xy + yz + zx
1 + x2 = (x + y)(y + z)
Tương tự ta có:
1 + y2 = (y + x)(y + z)
1 + z2 = (z + x)(z + y)
Thay vào P, ta được:
\(P=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(P=xy+yz+zx+xy+yz+zx\)
\(P=2\left(xy+yz+zx\right)=2\)
Vậy P = 2
Lời giải:
$P=(xy+yz+xz)^2+(x^2-yz)^2+(y^2-zx)^2+(z^2-xy)^2$
$=x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2+x^4+y^2z^2-2x^2yz+y^4+z^2x^2-2xzy^2+z^4+x^2y^2-2xyz^2$
$=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2$
$=(x^2+y^2+z^2)^2=10^2=100$
\(\frac{x^2-yz}{yz}+1+\frac{y^2-zx}{zx}+1+\frac{z^2-xy}{xy}+1=3\Leftrightarrow\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3\)
\(\Leftrightarrow\frac{1}{xyz}\left(x^3+y^3+z^3\right)=3\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Tới đây bạn thay vào nhé :)
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)
Do \(x-y-z=0\)
\(\Rightarrow x-z=y;y-x=-z;y+z=x\)
Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
Vậy A=-1
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz+y+1}{yz+y+1}\)
\(=1\)
\(P=\frac{1}{xy-xyz-z}+\frac{1}{yz-xyz-x}+\frac{1}{xz-xzy-y}\) .Do xyz=-z =>-xyz=1 và x+y+z=0 . Thế vào P ta được \(P=\frac{1}{xy+1+x+y}+\frac{1}{yz+1+y+z}+\frac{1}{xz+1+x+z}\)\(P=\frac{1}{\left(x+1\right)\left(y+1\right)}+\frac{1}{\left(y+1\right)\left(z+1\right)}+\frac{1}{\left(x+1\right)\left(z+1\right)}\) =\(\frac{z+1+x+1+y+1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(P=\frac{3}{xyz+z+xz+yz+xy+1+x+y}\) =\(\frac{3}{xy+yz+xz}\) (Do x+y+z=0; xyz=-1)
x+y+z=0 => (x+y+z)2=0 => x2+y2+z2 +2(xy+yz+xz)=0 => 2(xy+yz+xz)=-6 => xy+yz+xz=-3 Thế vào P ta được :
\(P=\frac{3}{-3}=-1\) . Chúc bạn học tốt
\(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
Mà \(xy+yz+xz=0\)
\(\Rightarrow x^2+y^2+z^2+2.0=0\)
\(\Rightarrow x^2+y^2+z^2=0\)
Mà \(x^2\ge0\)
\(y^2\ge0\)
\(z^2\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge0\)
Mà \(x^2+y^2+z^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)
\(=\left(-1\right)^{2007}+0+1^{2009}\)
\(=-1+0+1\)
\(=0\)
Vậy ...