Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.
Có xy + yz + zx = 1
=> 1 + x2 = x2 + xy + yz + zx
1 + x2 = (x + y)(y + z)
Tương tự ta có:
1 + y2 = (y + x)(y + z)
1 + z2 = (z + x)(z + y)
Thay vào P, ta được:
\(P=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(P=xy+yz+zx+xy+yz+zx\)
\(P=2\left(xy+yz+zx\right)=2\)
Vậy P = 2
\(A=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)
=> \(\left(-A\right)=\frac{yz}{\left(x-y\right)\left(z-x\right)}+\frac{xz}{\left(x-y\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(y-z\right)}\)
<=> \(\left(-A\right)=\frac{yz\left(y-z\right)+xz\left(z-x\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{y^2z-yz^2+xz^2-x^2z+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
<=> \(\left(-A\right)=\frac{z^2\left(x-y\right)-z\left(x^2-y^2\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)=> \(\left(-A\right)=\frac{\left(x-y\right)\left(z^2-zx-zy+xy\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(x-y\right)\left[z\left(z-x\right)-y\left(z-x\right)\right]}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(\left(-A\right)=\frac{\left(x-y\right)\left(z-x\right)\left(z-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-1\)
=> A = 1
Đáp số: A=1
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
Bài này hình như x,y,z>0
Ta có: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{\left(x^2+xy+yz+zx\right)}}=x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}\)
Tương tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\sqrt{\left(x+z\right)^2}\)
\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\sqrt{\left(x+y\right)^2}\)
Cộng từng vế, ta có:
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\)
\(\Leftrightarrow A=2\left(xy+yz+zx\right)=2\)
\(\hept{\begin{cases}1+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\1+z^2=\left(z+x\right).\left(z+y\right)\\1+x^2=\left(x+y\right)\left(x+z\right)\end{cases}}\)
Thế vào \(A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
\(=2\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\)
Nếu x,y,z\(\ge0\Rightarrow A=2\)
Nếu x,y,z\(< 0\)\(\Rightarrow A=-2\)
\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2.0\)
\(\Rightarrow x^2+y^2+z^2=0\Rightarrow x=y=z=0\)
\(B=\left(-1\right)^{2007}+0^{2008}+1^{2009}=0\)