Cho A = 1+3+32+33+...+3100
So sánh 2A với 3101
Tuy là chỉ nhìn một cái là ra kết quả nhưng các bạn nhớ giải rõ ràng ra thì mới được **** nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A3 =3.(1 +3 +32 +........+3100)
2A =3 +32 +..........+3101 -1-3 -31 -..........-3100
2A =3101 -1
Vay 2A < 3101
\(A=1+3^2+3^3+....+3^{100}\)
\(3A=3+3^3+3^4+...+3^{101}\)
\(3A-A=3+3^3+3^4+...+3^{101}-1-3^2-3^3-...-3^{100}\)
\(2A=3^{101}-1\)
\(Vì\) \(3^{101}-1< 3^{101}\)
\(=>2A< 3^{101}\)
CHj giải cho em rồi đó, có j ko hiểu hỏi lại nha
A=1+3+32+...+3100
3A=3+32+33+...+3101
3A-A=(3+32+33+...+3101)-(1+3+32+...+3100)
2A=3101-1
Vì 3101-1<3101 nên 2A<3101
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
ta lấy 58-34 vì số đó +34 ra 58 nên 58-34=24
số đó là
24 :6= 4
p là snt lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2
Xét trường hợp p=3k+1 thì 2p+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 nên là hợp số( loại vì 2p+1 là snt)
p=3k+2 thì 2p+1=2(3k+2)+1=6k+4+1=6k+5 thỏa mãn là snt theo đề bài
Vậy p=3k+2
4p+1=4(3k+2)+1=12k+9=3(4k+3) chia hết cho 3 nên là hợp số
Vậy....
Tại sao không giải ra $\sqrt{P}$ và $\sqrt{P}$?
Em đã có $P$ rồi, nhưng với $\sqrt{P}$, em làm sao rút gọn được khi mà $P$ đã khá gọn rồi. Cũng chẳng có giá trị nào của $x$ để tính cụ thể $P, \sqrt{P}$ rồi đi so sánh. Vì vậy cách này không khả thi.
Vậy thì phải tìm hướng khác. Muốn so sánh 2 số, ta xét hiệu hai số đó.
$P-\sqrt{P}=\sqrt{P}(\sqrt{P}-1)$
Rõ ràng $\sqrt{P}$ đã dương rồi, giờ ta phải xem xét xem $\sqrt{P}-1$ âm hay dương, hay $P$ có lớn hơn 1 không
Đó là lý do vì sao bài giải như trên.
Còn câu hỏi khi nào giải ra từng cái $P$ và $\sqrt{P}$, thì đó là khi đề cho $x=2$ chả hạn, so sánh $P$ và $\sqrt{P}$.
Nhưg hầu như sẽ chẳng có đề nào ra kiểu vậy, mà đa số lợi dụng tính chất của phân thức đó để so sánh (ví dụ như trong bài tính chất nổi bật là $P>1$) cho nhanh. Đó là cái hay của đề bài.
A = 1 + 3 + 32 + 33 + ... + 3100
3A = 3 + 32 + 33 + 34 + ... + 3101
3A - A = (3 + 32 + 33 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3101 - 1
Vì 3101 - 1 < 3101 nên A < 3101