Mọi người cho mình hỏi:
-Số chính phương là gì?
-Số nguyên tố cùng nhau là gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))
\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)
\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)
\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)
\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)
Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)
\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)
Mà (x-z)(y-z)=z^2 chính phương
x,y,z thuộc N*
\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương
\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)
với m,n thuộc Z
\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)
\(\Rightarrow z=mn\)
Ta có: (x-z)+(y-z)=(x+y)-2z
\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)
\(\Rightarrow x+y=\left(m+n\right)^2\)
Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)
\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)
\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)
Vậy xyz là số chính phương.
Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))
\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)
\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)
\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)
\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)
Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)
\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)
Mà (x-z)(y-z)=z^2 chính phương
x,y,z thuộc N*
\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương
\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)
với m,n thuộc Z
\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)
\(\Rightarrow z=mn\)
Ta có: (x-z)+(y-z)=(x+y)-2z
\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)
\(\Rightarrow x+y=\left(m+n\right)^2\)
Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)
\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)
\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)
Vậy xyz là số chính phương.
Hai số nguyên tố cùng nhau: x và y là hai số nguyên tố cùng nhau có ƯCLN(a,b)=1
VD: 5 và 2 là hai số nguyên tố cùng nhau vì ƯCLN(5,2)=1
#) Giải
Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0)
=> z(x + y) = xy
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1
Vậy không tồn tại x, y, z thỏa đk bài toán
~ Hok tốt ~
kham khảo ở đây nha
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này
hc tốt ~:B~
1/ Dấu hiệu chia hết cho 2 : Các số có chữ số tận cùng là số chẵn thì chia hết cho 2 và chỉ những số đó mới chia hết cho 2
Dấu hiệu chia hết cho 3 : Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó mới chia hết cho 3
Dấu hiệu chia hết cho 5 : Các số có chữ số tận cùng là 0 hoặc 5 thì chia hết cho 5 và chỉ những số đó mới chia hết cho 5
Dấu hiệu chia hết cho 9 : Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và chỉ những số đó mới chia hết cho 9
2/
Số nguyên tố : là số tự nhiên lớn hơn 1 , chỉ có hai ước là 1 và chính nó
VD : 2; 3 ;4 ..
Hơp số : là số tự nhiên lớn hơn 1 , có nhiều hơn hai ước
VD : 4 ; 6 ;9..
3/
Hai số nguyên tố cùng nhau là : Các số nguyên a và b được gọi là số nguyên tố cùng nhau nếu chúng có UwCLN là 1
VD : 2 và 13 ; 4 và 19 ..
4/
UWCLN của hai hay nhiều số là : số lớn nhất trong tập hợp các ƯC của các số đó
Cách tìm :
B1 : Phân tích mỗi số ra thừa số nguyên tố
B2 : Chọn ra các thừa số nguyên tố chung
B3 : Lấy lũy thừa nhỏ nhất của các thừa số nguyên tố rồi tính tích
5/
BCNN của hai hay nhiều số là : số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó
Cách tìm :
B1 : Phân tích các số ra thừa số nguyên tố
B2 : Chọn ra các thừa số nguyên tố chung và riêng
B3 : Lấy số mũ lớn nhất rồi tính tích của các thừa số nguyên tố đó
k mình nha ^^
Số chính phương là bình phương của một số
Số nguyên tố cùng nhau là các số có ước chung lớn nhất là 1
-Số chính phương là bình phương của một số tự nhiên có dạng a2.
-Hai số nguyên tố cùng nhau là hai số có ước chung lớn nhất là 1.
đúng nhé !