Cho a,b là các số thực thỏa mãn
\(\lim\limits_{ }\dfrac{an^3+bn^2+2n+4}{n^2+1}=1\) . Tìm a,b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(a\ne0\Rightarrow\lim\dfrac{an^3+bn^2+2n+4}{n^2+1}=\lim\dfrac{an+b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n}}=\infty\) ko thỏa mãn
\(\Rightarrow a=0\)
Khi đó: \(\lim\dfrac{bn^2+2n+4}{n^2+1}=\lim\dfrac{b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n^2}}=b\Rightarrow b=1\)
\(\Rightarrow2a+b=1\)
\(x^2+2x-3=0\) có nghiệm \(x=1\) nên giới hạn đã cho hữu hạn khi \(2x^2+ax+b=0\) cũng có nghiệm \(x=1\)
\(\Rightarrow2.1^2+a.1+b=0\Rightarrow a+b+2=0\Rightarrow b=-a-2\)
Thay vào:
\(\lim\limits_{x\rightarrow1}\dfrac{2x^2+ax-a-2}{x^2+2x-3}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2\right)+a\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2+a\right)}{\left(x-1\right)\left(x+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2x+2+a}{x+3}=\dfrac{4+a}{4}=\dfrac{3}{4}\)
\(\Rightarrow4+a=3\Rightarrow a=-1\Rightarrow b=-a-2=-1\)
Giới hạn đã cho hữu hạn khi \(2x^2+ax+b=0\) có nghiệm \(x=1\)
\(\Rightarrow2+a+b=0\Rightarrow b=-a-2\)
Ta được: \(\lim\limits_{x\rightarrow1}\dfrac{2x^2+ax-a-2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)\left(x+1\right)+a\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2+a\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2x+2+a}{x+1}\)
\(=\dfrac{4+a}{2}=\dfrac{1}{4}\)
\(\Rightarrow a=-\dfrac{7}{2}\Rightarrow b=\dfrac{3}{2}\)
Ta có : \(lim\dfrac{an^3+bn^2+2n+4}{n^2+1}=lim\dfrac{an+b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n^2}}=1\) \(\Rightarrow a=0\)
Với a = 0 ; \(lim\dfrac{b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n^2}}=1\Rightarrow b=1\) Vậy ...