A=2/6x-5-9x^2 Tìm giá trị nhỏ nhất của b.thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)
\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)
2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
\(maxM=6\Leftrightarrow x=-1\)
3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)
\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)
Ta có:\(-\left(-\frac{4}{9}x-\frac{2}{15}\right)^6\le0\forall x\)
\(-\left(-\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\forall x\)
Dấu = xảy ra khi \(-\left(-\frac{4}{9}x-\frac{2}{15}\right)^6=0\)
\(\Leftrightarrow x=-\frac{3}{10}\)
Vậy MaxB=3 tại x=-3/10
Hay\(B\le3\forall x\)
Cậu viết rõ ra một chút được không nhìn thế này hơi khó hiểu a
Lời giải:
$A=(9x^2-6xy+y^2)+5y^2-6x-6y+20$
$=(3x-y)^2-2(3x-y)+4y^2-8y+20$
$=(3x-y)^2-2(3x-y)+1+(4y^2-8y+4)+15$
$=(3x-y-1)^2+(2y-2)^2+15\geq 15$
Vậy $A_{\min}=15$.
Giá trị này đạt tại $3x-y-1=2y-2=0$
$\Leftrightarrow (x,y)=(\frac{2}{3},1)$
để A nhỏ nhất thì 6x - 5 - 9x2 lớn nhất
ta có 6x - 5 - 9x2 = - ( 9x2 - 6x + 5 )
= -( 3x - 1 ) 2 + 4
= 4 - (3x - 1 )2
ta có (3x - 1)2 lớn hơn hoặc = 0 với mọi x
trường hợp dấu bằng xảy ra cũng là trường hợp để 4 - (3x - 1 )2 lớn nhất
ta có với (3x -1)2 = 0 tức x = 1/3 thì 4 - (3x - 1 )2 = 4
khi đó A = \(\frac{2}{6x-5-9x^2}=\frac{2}{4}=\frac{1}{2}\)
vậy A nhỏ nhất = 1/2 khi và chỉ khi x=1/3
Bài này phải là tìm GTLN bạn nhé :)
\(-9x^2-6x+19=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\le20\)
Vậy Max = 20 tại x = \(-\frac{1}{3}\)
Ta có : \(C=\frac{2}{6x-5-9x^2}\)
\(\Leftrightarrow C=-\frac{2}{9x^2-6x+5}\)
\(\Leftrightarrow C=-\frac{2}{\left(3x-1\right)^2+4}\)
Để C đạt giá trị nhỏ nhất
\(\Leftrightarrow\left(3x-1\right)^2+4\)đạt giá trị nhỏ nhất
Ta có : \(\left(3x-1\right)^2+4\ge4\)
Dấu " = " xảy ra :
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(Min_C=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)
Một mảnh đất hình vuông có cạnh dài 12m. Người ta chia mảnh đất thành hai hình chữ nhật để làm sân và xây nhà. Diện tích làng Sơn chiếm 1/3 diện tích mảnh đất. Tính chu vi và diện tích phần đất để xây nhà?
\(a,M=x^2+4x+5\)
\(M=x^2+2.x.2+2^2+1\)
\(M=\left(x+2\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = -2
Vậy Min M = 1 <=> x = -2
b, Đặt \(A=9x^2-6x+6\)
\(A=\left(3x\right)^2-2.3x+1+5\)
\(A=\left(3x-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x = 1/3
Vậy Min A = 5 <=> x = 1/3
a) M = x2 + 4x + 5
= x2 + 4x + 4 + 1
= ( x + 2 )2 + 1
Nhận xét :
( x + 2 )2 > 0 với mọi x
=> ( x + 2 )2 + 1 > 1
=> M > 1
Dấu " = " xảy ra khi : ( x + 2 )2 = 0
=> x + 2 = 0
=> x = - 2
Vậy giá trị nhỏ nhất của M = 1 khi x = - 2
b) N = 9x2 - 6x + 6
= 9x2 - 6x + 1 + 5
= ( 3x + 1 )2 + 5
Nhận xét :
( 3x + 1 )2 > 0 với mọi x
=> ( 3x + 1 )2 + 5 > 5
=> N > 5
Dấu " = " xảy ra khi : ( 3x + 1 )2 = 0
=> 3x + 1 = 0
=> x = \(-\frac{1}{3}\)
Vậy giá trị nhỏ nhất của N = 5 khi x = \(-\frac{1}{3}\)