K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2018

\(a,M=x^2+4x+5\)

\(M=x^2+2.x.2+2^2+1\)

\(M=\left(x+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = -2

Vậy Min M = 1 <=> x = -2

b, Đặt \(A=9x^2-6x+6\)

\(A=\left(3x\right)^2-2.3x+1+5\)

\(A=\left(3x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x = 1/3

Vậy Min A = 5 <=> x = 1/3

7 tháng 9 2018

a) M = x2 + 4x  + 5 

        = x2 + 4x + 4 + 1

        = ( x + 2 )2 + 1

Nhận xét :

( x + 2 )2 > 0 với mọi x

=>  ( x + 2 )2 + 1  > 1

=> M > 1

Dấu " = " xảy ra khi : ( x + 2 )2 = 0

                                => x + 2 = 0

                                 => x = - 2

Vậy giá trị nhỏ nhất của M = 1 khi x = - 2

b) N =  9x2 - 6x + 6

=  9x2 - 6x + 1 + 5 

= ( 3x + 1 )2 + 5

Nhận xét :

( 3x + 1 )2 > 0 với mọi x

=>  ( 3x + 1 )2 + 5 > 5

=> N > 5 

Dấu " = " xảy ra khi : ( 3x + 1 )2 = 0

                               => 3x + 1 = 0

                                => x = \(-\frac{1}{3}\)

Vậy giá trị nhỏ nhất của N = 5 khi x = \(-\frac{1}{3}\) 

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

d) Ta có: \(x^2+12x+39\)

\(=x^2+12x+36+3\)

\(=\left(x+6\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-6

e) Ta có: \(-x^2-12x\)

\(=-\left(x^2+12x+36-36\right)\)

\(=-\left(x+6\right)^2+36\le36\forall x\)

Dấu '=' xảy ra khi x=-6

f) Ta có: \(4x-x^2+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=1

2 tháng 7 2021

( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )

a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)

\(=\left(5x-2\right)^2+3\)

Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)

Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)

b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)

Vậy Min = 1 <=> x = 1/3

c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)

Vậy Max = -1 <=> x = 1

d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)

Vậy Min = 3 <=> x = - 6

e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)

Vậy Max = 36 <=> x = -6 .

f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

Vậy Max = 5 <=> x = 2

27 tháng 8 2021

`A=x^2-4x+y^2-8y+6`

`A=x^2-4x+4+y^2-8y+16-14`

`A=(x-2)^2+(y-4)^2-14`

VÌ `(x-2)^2+(y-4)^2>=0`

`=>(x-2)^2+(y-4)^2-14>=-14`

`=>A>=-14`

Dấu "=" xảy ra khi `x-2=0,y-4=0<=>{(x=2),(y=4):}`

22 tháng 12 2021

\(C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\\ B=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\\ B_{max}=-2\Leftrightarrow x=3\)

22 tháng 12 2021

C = 4x - x2 + 3 = - x+ 4x + 3 = -x2 + 2x2 - 4 + 7 = - (x2 -2x2 + 4) + 7

C = - (x - 2)2 +7 \(\le\) 7

Dấu "=" <=> x - 2 = 0 <=> x = 2

Vậy gtln của C = 7 khi x = 2 

B = - x+ 6x - 11 = - x2 + 2x3 - 9 - 2 = - (x2 - 2x3 + 9) - 2

B = - (x - 3)2 - 2 \(\le\) - 2

Dấu "=" <=> x - 3 = 0 <=> x = 3

Vậy gtln của B = -2 khi x = 3

19 tháng 9 2021

C = x - x2

C = x(1 - x)

Giá trị nhỏ nhất của C khi: \(\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

23 tháng 10 2021

\(a,=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=4\)

\(b,=\left(4x^2-12x+9\right)+4=\left(2x-3\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)

\(c,=\left(9x^2-2\cdot3\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)+\dfrac{26}{9}=\left(3x-\dfrac{1}{3}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\)

Dấu \("="\Leftrightarrow3x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{9}\)

18 tháng 7 2021

có vài chỗ ko thấy

 

7 tháng 11 2021

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

22 tháng 12 2021

\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)

22 tháng 12 2021

a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

\(minA=2\Leftrightarrow x=3\)

b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)

\(minB=51\Leftrightarrow x=5\)

c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)