Cho A (2; -1), B(4;0). Viết phương trình đường thẳng tổng quát đường thẳng d cách A, B các khoảng bằng nhau và bằng \(\sqrt{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=2(1+2+2^2+...+2^19)
=>A chia hết cho 2
b)A=(2+2^2)+(2^3+2^4)+...+(2^19+2^20)
A=2(1+2)+2^3(1+2)+...+2^19(1+2)
A=2.3+2^3.3+...+2^19.3
A=3(2+2^3+...+2^19)
=>A chia hết cho 3
c)A=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)
A=2(1+2^2)+2^2(1+2^2)+...+2^18(1+2^2)
A=2.5+2^2.5+...+2^18.5
A=5(2+2^2+...+2^18)
=>A chia hết cho 5
\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)
\(A=2\cdot3+...+2^{99}\cdot3\)
\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)
2 ý kia tương tự
Giải:
Đặt S=(2+2^2+2^3+...+2^100)
=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296
=2.31+26.31+...+296.31
=31.(2+26+...+296)\(⋮\)31
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5
Gọi M là trung điểm AB \(\Rightarrow M\left(3;-\dfrac{1}{2}\right)\) ; \(\overrightarrow{AB}=\left(2;1\right)\) \(\Rightarrow AB=\sqrt{5}\)
Có 2 trường hợp có thể xảy ra:
TH1: d đi qua M và cách AB một khoảng \(\sqrt{5}\)
Nhưng theo định lý đường xiên - đường vuông góc, ta luôn có \(d\left(A;d\right)=d\left(B;d\right)\le AM=\dfrac{\sqrt{5}}{2}< \sqrt{5}\)
Nên ko tồn tại đường thẳng d thỏa mãn TH1
TH2: d song song AB và cách đường thẳng AB 1 khoảng \(\sqrt{5}\)
\(\Rightarrow\) d nhận (1;-2) là 1 vtpt nên pt có dạng: \(x-2y+c=0\)
\(d\left(B;d\right)=\sqrt{5}\Leftrightarrow\dfrac{\left|4+c\right|}{\sqrt{1^2+\left(-2\right)^2}}=\sqrt{5}\Leftrightarrow\left|c+4\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}c=1\\c=-9\end{matrix}\right.\) \(\Rightarrow\) pt d: \(\left[{}\begin{matrix}x-2y+1=0\\x-2y-9=0\end{matrix}\right.\)