K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2022

\(y'=\dfrac{-2}{\left(x-1\right)^2}\)

Gọi điểm trên trục tung có tọa độ \(M\left(0;m\right)\)

Đường thẳng d qua M có dạng: \(y=kx+m\)

d không tiếp xúc đồ thị hàm số khi và chỉ khi:

\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}=kx+m\\k=\dfrac{-2}{\left(x-1\right)^2}\end{matrix}\right.\) vô nghiệm

\(\Rightarrow\dfrac{x+1}{x-1}=\dfrac{-2x}{\left(x-1\right)^2}+m\) vô nghiệm

\(\Rightarrow\left(m-1\right)x^2-2\left(m+1\right)x+m+1=0\)

\(\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(m+1\right)< 0\)

\(\Leftrightarrow2m+2< 0\)

\(\Rightarrow m< -1\)

Hay \(y< -1\)

NV
23 tháng 4 2022

\(y'=\dfrac{-2}{\left(x-1\right)^2}\)

Gọi \(M\left(m;0\right)\) là điểm thuộc trục hoành, đường thẳng d qua M có dạng: \(y=k\left(x-m\right)\)

d không là tiếp tuyến của đồ thị khi và chỉ khi:

\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}=k\left(x-m\right)\\k=\dfrac{-2}{\left(x-1\right)^2}\end{matrix}\right.\) vô nghiệm

\(\Rightarrow\dfrac{x+1}{x-1}=\dfrac{-2\left(x-m\right)}{\left(x-1\right)^2}\) vô nghiệm

\(\Rightarrow x^2+2x-2m-1=0\) vô nghiệm

\(\Rightarrow\Delta'=2m+2< 0\Rightarrow m< -1\)

Hay \(x< -1\)

Tất cả các đáp án đều sai

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

$y'=\frac{-1}{(x+1)^2}$

Giao điểm của đồ thị $y=\frac{x+2}{x+1}$ vớ trục hoành là $(-2,0)$

PTTT của $y=\frac{x+2}{x+1}$ tại điểm tiếp điểm $(-2,0)$ là:

$y=f'(-2)(x+2)+f(-2)=\frac{-1}{(-2+1)^2}(x+2)+0$

$y=-x-2$

Đường tiếp tuyến $y=-x-2$ cắt trục tung tại điểm có tung độ:

$y=-0-2=-2$

 

NV
2 tháng 4 2021

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

a. \(\dfrac{2x+2}{x-1}=-2\Rightarrow2x+2=-2x+2\Rightarrow x=0\Rightarrow y'\left(0\right)=-4\)

Phương trình tiếp tuyến: \(y=-4\left(x-0\right)-2\)

b. Tiếp tuyến song song đường thẳng đã cho nên có hệ số góc k=-4

\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-2\\x=2\Rightarrow y=6\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4\left(x-0\right)-2\\y=-4\left(x-2\right)+6\end{matrix}\right.\)

c. Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm

Pt tiếp tuyến qua M có dạng: \(y=\dfrac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

Do tiếp tuyến qua A nên:

\(3=\dfrac{-4}{\left(x_0-1\right)^2}\left(4-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

\(\Leftrightarrow x_0^2-10x_0+21=0\Rightarrow\left[{}\begin{matrix}x_0=3\Rightarrow y'\left(3\right)=-1;y\left(3\right)=4\\x_0=7;y'\left(7\right)=-\dfrac{1}{9};y\left(7\right)=\dfrac{8}{3}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-\dfrac{1}{9}\left(x-7\right)+\dfrac{8}{3}\end{matrix}\right.\)

NV
2 tháng 4 2021

d.

Do tiếp tuyến tạo với 2 trục tọa độ 1 tam giác vuông cân nên có hệ số góc bằng 1 hoặc -1

\(\Rightarrow\left[{}\begin{matrix}\dfrac{-4}{\left(x-1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-4}{\left(x-1\right)^2}=-1\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=4\\x=-1\Rightarrow y=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-1\left(x+1\right)+0\end{matrix}\right.\)

30 tháng 9 2017

20 tháng 12 2018

Chọn A.

Tiếp điểm nằm trên trục hoành nên 

Ta có: 

Vậy phương tình tiếp tuyến có dạng 

Giao điểm của tiếp điểm vừa tìm với trục tung thỏa mãn hệ 

30 tháng 12 2021

Câu 77: B

Câu 78: A

13 tháng 6 2017

Đáp án D

8 tháng 6 2019

Đáp án D.

y ' = 3 x 2 − 12 x + 9

Gọi M x 0 ; x 0 3 − 6 x 0 2 + 9 x 0 − 1  là một điểm bất kì thuộc (C)  . Tiếp tuyến tại M:

  y = 3 x 0 2 − 12 x 0 + 9 x − x 0 + x 0 3 − 6 x 0 2 + 9 x 0 − 1

⇔ y = 3 x 0 2 − 12 x 0 + 9 x − 2 x 0 3 + 6 x 0 2 − 1

Gọi A a ; a − 1  là một điểm bất kì thuộc đường thẳng  y = x − 1   .

Tiếp tuyến tại M đi qua   A ⇔ 3 x 0 2 − 12 x 0 + 9 a − 2 x 0 3 + 6 x 0 2 − 1 = a − 1

⇔ 3 x 0 2 − 12 x 0 + 8 a = 2 x 0 3 − 6 x 0 2 (*).

Từ A kẻ được hai tiếp tuyến đến  C ⇔ *    có hai nghiệm  phân biệt.

Ta có  

3 x 0 2 − 12 x 0 + 8 = 0 ⇔ x 0 = 6 ± 2 3 3

Dễ thấy x 0 = 6 ± 2 3 3  không thỏa mãn .

Với   x 0 ≠ 6 ± 2 3 3 thì  * ⇔ a = 2 x 0 3 − 6 x 0 2 3 x 0 2 − 12 x 0 + 8 .

Xét hàm số f x = 2 x 3 − 6 x 2 3 x 2 − 12 x + 8 . Ta có f ' x = 6 x 4 − 8 x 3 + 20 x 2 − 16 x 3 x 2 − 12 x + 8 2 .

Bảng biến thiên của :

Vậy để (*) có 2 nghiệm phân biệt thì  a ∈ 0 ; 4   . Suy ra tập  T = 0 ; − 1 , 4 ; 3

Do đó tổng tung độ các điểm thuộc T bằng 2.