Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: y ' = 3 a x 2 + 2 b x + c
+) Đồ thị hàm số f'(x) đi qua gốc tọa độ => c=0
+) Đồ thị hàm số f'(x) có điểm cực trị:
1 ; − 1 ⇒ 6 a + 2 b = 0 3 a + 2 b = − 1 ⇔ a = 1 3 b = − 1
Vậy hàm số f ' x = x 2 − 2 x . Đồ thị hàm số f(x) tiếp xúc với trục hoành nên có cực trị nằm trên trục hoành. Các giá trị cực trị của hàm số f(x) là:
f 0 = d f 2 = 8 3 − 4 + d = − 4 3 + d
do điểm tiếp xúc có hoành độ dương
=> d = 4 3 => f(x) cắt trục tung tại điểm có tung độ 4 3
Chọn D.
Phương pháp
Hệ số góc của tiếp tuyến của đồ thị hàm số y = f(x)
Do đó hệ số góc của tiếp tuyến tại tại giao điểm của đồ thị hàm số với trục tung là y ' 0 = − 1 4 .
Đáp án A
Ta có y ' = − 1 x + 1 2 ; C ∩ O y = 0 ; 2 ⇒ y ' 0 = − 1
Do đó PTTT là: y = − x + 2
Đáp án A
Gọi M 0 ; − 2 là giao điểm của (C) và trục tung.
Ta có: y ' = − 3 x 2 + 6 x + 1 ⇒ y 0 = 1.
Suy ra PTTT với (C) tại M 0 ; − 2 là:
y = x − 0 − 2 ⇔ y = x − 2.